Abstract
Twelve denitrifying bacteria representing six genera were tested for an ability to nitrify pyruvic oxime heterotrophically. Six of these bacteria exhibited appreciable nitrification activity, yielding as much as 5.8 mM nitrite and little or no nitrate when grown in a mineral salts medium containing 7 mM pyruvic oxime and 0.05% yeast extract. Of the six active bacteria, four (Pseudomonas denitrificans, Pseudomonas aeruginosa, and two strains of Pseudomonas fluorescens) could grow on yeast extract but not pyruvic oxime, one (Pseudomonas aureofaciens) could grow slowly on pyruvic oxime, and one (Alcaligenes faecalis) could apparently grow on pyruvic oxime in the presence of yeast extract but not in its absence. Eight of the twelve bacteria in the resting state could oxidize hydroxylamine to nitrite, and P. aureofaciens was remarkably active in this regard. In general, those denitrifiers active in the nitrification of pyruvic oxime or hydroxylamine or both are abundant in soils. A possible advantage of having nitrification and denitrification capabilities in the same organism is discussed.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- 't Riet J van, Stouthamer A. H., Planta R. J. Regulation of nitrate assimilation and nitrate respiration in Aerobacter aerogenes. J Bacteriol. 1968 Nov;96(5):1455–1464. doi: 10.1128/jb.96.5.1455-1464.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amarger N., Alexander M. Nitrite formation from hydroxylamine and oximes by Pseudomonas aeruginosa. J Bacteriol. 1968 May;95(5):1651–1657. doi: 10.1128/jb.95.5.1651-1657.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castignetti D., Gunner H. B. Sequential nitrification by an Alcaligenes sp. and Nitrobacter agilis. Can J Microbiol. 1980 Sep;26(9):1114–1119. doi: 10.1139/m80-184. [DOI] [PubMed] [Google Scholar]
- Castignetti D., Hollocher T. C. Nitrogen Redox Metabolism of a Heterotrophic, Nitrifying-Denitrifying Alcaligenes sp. from Soil. Appl Environ Microbiol. 1982 Oct;44(4):923–928. doi: 10.1128/aem.44.4.923-928.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castignetti D., Petithory J. R., Hollocher T. C. Pathway of oxidation of pyruvic oxime by a heterotrophic nitrifier of the genus Alcaligenes: evidence against hydrolysis to pyruvate and hydroxylamine. Arch Biochem Biophys. 1983 Jul 15;224(2):587–593. doi: 10.1016/0003-9861(83)90246-1. [DOI] [PubMed] [Google Scholar]
- Gamble T. N., Betlach M. R., Tiedje J. M. Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol. 1977 Apr;33(4):926–939. doi: 10.1128/aem.33.4.926-939.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leong S. A., Neilands J. B. Siderophore production by phytopathogenic microbial species. Arch Biochem Biophys. 1982 Oct 15;218(2):351–359. doi: 10.1016/0003-9861(82)90356-3. [DOI] [PubMed] [Google Scholar]
- Obaton M., Amarger N., Alexander M. Heterotrophic nitrification by Pseudomonas aeurginosa. Arch Mikrobiol. 1968;63(2):122–132. doi: 10.1007/BF00412167. [DOI] [PubMed] [Google Scholar]
- QUASTEL J. H., SCHOLEFIELD P. G., STEVENSON J. W. Oxidation of pyruvic acid oxime by soil organisms. Biochem J. 1952 May;51(2):278–284. doi: 10.1042/bj0510278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
- Verstraete W., Alexander M. Heterotrophic nitrifiction by Arthrobacter sp. J Bacteriol. 1972 Jun;110(3):955–961. doi: 10.1128/jb.110.3.955-961.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YAMAFUJI K., KONDO H., OMURA H. Distribution of oxime in plant and animal tissues. Enzymologia. 1950 Sep 15;14(3):153–156. [PubMed] [Google Scholar]
