Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1984 Apr;47(4):693–698. doi: 10.1128/aem.47.4.693-698.1984

Production of two phosphatases by Lysobacter enzymogenes and purification and characterization of the extracellular enzyme.

R G von Tigerstrom
PMCID: PMC239750  PMID: 6426386

Abstract

Lysobacter enzymogenes produces an extracellular phosphatase (EC. 3.1.3.1) during the stationary phase of growth. The cells also produce a cell-associated alkaline phosphatase. This enzyme is found in the particulate fraction of cell extracts and may be membrane bound. The production of both phosphatases, especially the extracellular enzyme, is reduced by inorganic phosphate. The extracellular phosphatase was purified to a specific activity of 270 U/mg primarily by chromatography on carboxymethyl cellulose and gel filtration. The enzyme is stable under normal storage conditions but is rapidly inactivated above 70 degrees. It consists of one polypeptide with an approximate molecular weight of 25,000. The pH optimum is 7.5, and the Km for p-nitrophenylphosphate is 2.2 X 10(-4) M. The enzyme degrades a number of other phosphomonoesters but at a reduced rate compared with the rate obtained with p-nitrophenylphosphate. Phosphate and arsenate inhibit the enzyme, but EDTA and other chelating agents have no effect. The lack of a metal ion requirement for activity, the lower molecular weight, the soluble nature of the enzyme, and the lower pH optimum clearly distinguish the extracellular phosphatase from the cell-associated phosphatase and from other bacterial phosphatases.

Full text

PDF
693

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhatti A. R., DeVoe I. W., Ingram J. M. The release and characterization of some periplasm-located enzymes of Pseudomona aeruginosa. Can J Microbiol. 1976 Oct;22(10):1425–1429. doi: 10.1139/m76-211. [DOI] [PubMed] [Google Scholar]
  2. Cheng K. J., Costerton J. W. Localization of alkaline phosphatase in three gram-negative rumen bacteria. J Bacteriol. 1973 Oct;116(1):424–440. doi: 10.1128/jb.116.1.424-440.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheng K. J., Ingram J. M., Costerton J. W. Alkaline phosphatase localization and spheroplast formation of Pseudomonas aeruginosa. Can J Microbiol. 1970 Dec;16(12):1319–1324. doi: 10.1139/m70-218. [DOI] [PubMed] [Google Scholar]
  4. Costerton J. W. Relationship of a wall-associated enzyme with specific layers of the cell wall of a gram-negative bacterium. J Bacteriol. 1973 Jun;114(3):1281–1293. doi: 10.1128/jb.114.3.1281-1293.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  6. Glew R. H., Heath E. C. Studies on the extracellular alkaline phosphatase of Micrococcus sodonensis. I. Isolation and characterization. J Biol Chem. 1971 Mar 25;246(6):1556–1565. [PubMed] [Google Scholar]
  7. Hulett-Cowling F. M., Campbell L. L. Molecular weight and subunits of the alkaline phosphatase of Bacillus licheniformis. Biochemistry. 1971 Apr 13;10(8):1371–1376. doi: 10.1021/bi00784a015. [DOI] [PubMed] [Google Scholar]
  8. Ingram J. M., Cheng K. J., Costerton J. W. Alkaline phosphatase of Pseudomonas aeruginosa: the mechanism of secretion and release of the enzyme from whole cells. Can J Microbiol. 1973 Nov;19(11):1407–1415. doi: 10.1139/m73-227. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Moyer J. D., Henderson J. F., von Tigerstrom R. Ultrasensitive assay of RNA: application to 100-500 cells. Anal Biochem. 1983 May;131(1):190–193. doi: 10.1016/0003-2697(83)90153-7. [DOI] [PubMed] [Google Scholar]
  11. Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
  12. Ramaley R. F. Molecular biology of extracellular enzymes. Adv Appl Microbiol. 1979;25:37–55. doi: 10.1016/s0065-2164(08)70145-x. [DOI] [PubMed] [Google Scholar]
  13. Reichenbach H. Taxonomy of the gliding bacteria. Annu Rev Microbiol. 1981;35:339–364. doi: 10.1146/annurev.mi.35.100181.002011. [DOI] [PubMed] [Google Scholar]
  14. TORRIANI A., ROTHMAN F. Mutants of Escherichia coli constitutive for alkaline phosphatase. J Bacteriol. 1961 May;81:835–836. doi: 10.1128/jb.81.5.835-836.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Von Tigerstrom R. G., Manchak J. M. Isolation and characterization of two alkaline ribonucleases from calf serum. Biochim Biophys Acta. 1976 Jan 19;418(2):184–194. doi: 10.1016/0005-2787(76)90068-x. [DOI] [PubMed] [Google Scholar]
  16. von Tigerstrom R. G. Extracellular nucleases of Lysobacter enzymogenes: production of the enzymes and purification and characterization of an endonuclease. Can J Microbiol. 1980 Sep;26(9):1029–1037. doi: 10.1139/m80-175. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES