Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1984 Apr;47(4):715–723. doi: 10.1128/aem.47.4.715-723.1984

Successive changes in the epimural bacterial community of young lambs as revealed by scanning electron microscopy.

R E Mueller, J M Asplund, E L Iannotti
PMCID: PMC239754  PMID: 6721488

Abstract

Scanning electron microscopy was used to determine the time of initial colonization of the rumen epithelium of young lambs and successive changes with time in the morphological composition of the epimural community. Tissue samples were obtained from two groups of lambs at 1, 2, 4, 6, 8, and 10 weeks of age. Comparisons were made with the epimural communities observed at 12 well-distributed sites in the rumen of a mature wether. Epimural bacteria were already present on the epithelium at 1 week of age. The morphological composition of the epimural community changed with age, with the pattern of succession being similar in both groups of lambs. A total of 24 morphotypes were distinguished by scanning electron microscopy; 17 were rod shaped, 4 were cocci, 2 were spiral, and 1 was filamentous. These morphotypes were further subdivided into: (i) those persisting after their initial colonization in young lambs and present in the adult (7 morphotypes), (ii) those seen only in the adult (2 morphotypes), and (iii) those present only in young lambs (15 morphotypes). The seven morphotypes present in both the lamb and the adult could be considered indigenous members of the epimural community. Several morphotypes appeared restricted in their colonization to certain regions of the papillae, suggesting the presence of microhabitats within the epithelial habitat. Two rod-shaped bacteria were repeatedly seen specifically attached to one another, suggesting an interspecific association.

Full text

PDF
715

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauchop T., Clarke R. T., Newhook J. C. Scanning electron microscope study of bacteria associated with the rumen epithelium of sheep. Appl Microbiol. 1975 Oct;30(4):668–675. doi: 10.1128/am.30.4.668-675.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breznak J. A., Pankratz H. S. In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki]. Appl Environ Microbiol. 1977 Feb;33(2):406–426. doi: 10.1128/aem.33.2.406-426.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheng K. J., McCowan R. P., Costerton J. W. Adherent epithelial bacteria in ruminants and their roles in digestive tract function. Am J Clin Nutr. 1979 Jan;32(1):139–148. doi: 10.1093/ajcn/32.1.139. [DOI] [PubMed] [Google Scholar]
  4. Cheng K. J., Wallace R. J. The mechanism of passage of endogenous urea through the rumen wall and the role of ureolytic epithelial bacteria in the urea flux. Br J Nutr. 1979 Nov;42(3):553–557. doi: 10.1079/bjn19790147. [DOI] [PubMed] [Google Scholar]
  5. Dehority B. A., Grubb J. A. Bacterial population adherent to the epithelium on the roo of the dorsal rumen of sheep. Appl Environ Microbiol. 1981 Jun;41(6):1424–1427. doi: 10.1128/aem.41.6.1424-1427.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dinsdale D., Cheng K. J., Wallace R. J., Goodlad R. A. Digestion of epithelial tissue of the rumen wall by adherent bacteria in infused and conventionally fed sheep. Appl Environ Microbiol. 1980 May;39(5):1059–1066. doi: 10.1128/aem.39.5.1059-1066.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibbons R. J., Houte J. V. Bacterial adherence in oral microbial ecology. Annu Rev Microbiol. 1975;29:19–44. doi: 10.1146/annurev.mi.29.100175.000315. [DOI] [PubMed] [Google Scholar]
  8. Latham M. J., Brooker B. E., Pettipher G. L., Harris P. J. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl Environ Microbiol. 1978 Jun;35(6):1166–1173. doi: 10.1128/aem.35.6.1166-1173.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Latham M. J., Brooker B. E., Pettipher G. L., Harris P. J. Ruminococcus flavefaciens Cell Coat and Adhesion to Cotton Cellulose and to Cell Walls in Leaves of Perennial Ryegrass (Lolium perenne). Appl Environ Microbiol. 1978 Jan;35(1):156–165. doi: 10.1128/aem.35.1.156-165.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Malick L. E., Wilson R. B. Modified thiocarbohydrazide procedure for scanning electron microscopy: routine use for normal, pathological, or experimental tissues. Stain Technol. 1975 Jul;50(4):265–269. doi: 10.3109/10520297509117069. [DOI] [PubMed] [Google Scholar]
  11. McCowan R. P., Cheng K. J., Bailey C. B., Costerton J. W. Adhesion of bacteria to epithelial cell surfaces within the reticulo-rumen of cattle. Appl Environ Microbiol. 1978 Jan;35(1):149–155. doi: 10.1128/aem.35.1.149-155.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McCowan R. P., Cheng K. J., Costerton J. W. Adherent bacterial populations on the bovine rumen wall: distribution patterns of adherent bacteria. Appl Environ Microbiol. 1980 Jan;39(1):233–241. doi: 10.1128/aem.39.1.233-241.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McCowan R. P., Cheng K. J., Costerton J. W. Colonization of a portion of the bovine tongue by unusual filamentous bacteria. Appl Environ Microbiol. 1979 Jun;37(6):1224–1229. doi: 10.1128/aem.37.6.1224-1229.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mead L. J., Jones G. A. Isolation and presumptive identification of adherent epithelial bacteria ("epimural" bacteria) from the ovine rumen wall. Appl Environ Microbiol. 1981 Apr;41(4):1020–1028. doi: 10.1128/aem.41.4.1020-1028.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mueller R. E., Iannotti E. L., Asplund J. M. Isolation and identification of adherent epimural bacteria during succession in young lambs. Appl Environ Microbiol. 1984 Apr;47(4):724–730. doi: 10.1128/aem.47.4.724-730.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Oh J. H., Hume I. D., Torell D. T. Development of microbial activity in the alimentary tract of lambs. J Anim Sci. 1972 Aug;35(2):450–459. doi: 10.2527/jas1972.352450x. [DOI] [PubMed] [Google Scholar]
  17. STEED P. A. Simonsiellaceae fam.nov.with characterization of Simonsiella crassa and Alysiella filiformis. J Gen Microbiol. 1962 Dec;29:615–624. doi: 10.1099/00221287-29-4-615. [DOI] [PubMed] [Google Scholar]
  18. Tamate H., Kikuchi T., Onodera A., Nagatani T. Scanning electron microscopic observation on the surface structure of the bovine rumen mucosa. Arch Histol Jpn. 1971 Oct;33(4):273–282. doi: 10.1679/aohc1950.33.273. [DOI] [PubMed] [Google Scholar]
  19. Wallace R. J., Cheng K. J., Dinsdale D., Orskov E. R. An independent microbial flora of the epithelium and its role in the ecomicrobiology of the rumen. Nature. 1979 May 31;279(5712):424–426. doi: 10.1038/279424a0. [DOI] [PubMed] [Google Scholar]
  20. Zhilina T. N., Zavarzin G. A. Troficheskie sviazi metanosartsinoi i ee sputnikami. Mikrobiologiia. 1973 Mar-Apr;42(2):266–273. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES