Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1984 Apr;47(4):835–842. doi: 10.1128/aem.47.4.835-842.1984

Laboratory Calibrations of the [3H]Adenine Technique for Measuring Rates of RNA and DNA Synthesis in Marine Microorganisms

Christopher D Winn 1,*, David M Karl 1
PMCID: PMC239773  PMID: 16346522

Abstract

The nucleic acid synthesis rates of several marine phytoplankton and bacteria grown in chemostat and batch cultures were measured by using [3H]adenine. The [3H]adenine synthesis rates showed excellent agreement with the known rates of synthesis estimated from chemical RNA and DNA data. Under certain conditions, RNA turnover and ATP pool compartmentalization produce inaccuracies in synthesis measurements made with [3H]adenine. However, accurate measurements of the rates of microbial RNA and DNA synthesis can be made in any environmental situation provided a few simple precautions are observed. First, time course experiments are recommended. Second, experiments should be conducted for periods long enough to avoid problems arising from disequilibria of internal ATP pools. Finally, exogenous [3H]adenine should remain in the medium over the length of the time course.

Full text

PDF
835

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brock T. D. Bacterial growth rate in the sea: direct analysis by thymidine autoradiography. Science. 1967 Jan 6;155(3758):81–83. doi: 10.1126/science.155.3758.81. [DOI] [PubMed] [Google Scholar]
  3. Chapman A. G., Atkinson D. E. Adenine nucleotide concentrations and turnover rates. Their correlation with biological activity in bacteria and yeast. Adv Microb Physiol. 1977;15:253–306. doi: 10.1016/s0065-2911(08)60318-5. [DOI] [PubMed] [Google Scholar]
  4. Christian R. R., Hanson R. B., Newell S. Y. Comparison of methods for measurement of bacterial growth rates in mixed batch cultures. Appl Environ Microbiol. 1982 May;43(5):1160–1165. doi: 10.1128/aem.43.5.1160-1165.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dietz A. S., Albright L. J., Tuominen T. Alternative model and approach for determining microbial heterotrophic activities in aquatic systems. Appl Environ Microbiol. 1977 Apr;33(4):817–823. doi: 10.1128/aem.33.4.817-823.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Forsdyke D. R. Studies on the incorporation of [5-3H] uridine during activation and transformation of lymphocytes induced by phytohaemagglutinin. Dependence on the incorporation rate on uridine concentration at certain critical concentrations. Biochem J. 1968 Mar;107(2):197–205. doi: 10.1042/bj1070197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fuhrman J. A., Azam F. Bacterioplankton secondary production estimates for coastal waters of british columbia, antarctica, and california. Appl Environ Microbiol. 1980 Jun;39(6):1085–1095. doi: 10.1128/aem.39.6.1085-1095.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Karl D. M. Cellular nucleotide measurements and applications in microbial ecology. Microbiol Rev. 1980 Dec;44(4):739–796. doi: 10.1128/mr.44.4.739-796.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Karl D. M. Measurement of microbial activity and growth in the ocean by rates of stable ribonucleic Acid synthesis. Appl Environ Microbiol. 1979 Nov;38(5):850–860. doi: 10.1128/aem.38.5.850-860.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Karl D. M. Selected nucleic Acid precursors in studies of aquatic microbial ecology. Appl Environ Microbiol. 1982 Oct;44(4):891–902. doi: 10.1128/aem.44.4.891-902.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Karl D. M. Simultaneous rates of ribonucleic Acid and deoxyribonucleic Acid syntheses for estimating growth and cell division of aquatic microbial communities. Appl Environ Microbiol. 1981 Nov;42(5):802–810. doi: 10.1128/aem.42.5.802-810.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Khym J. X., Jones M. H., Lee W. H., Regan J. D., Volkin E. On the question of compartmentalization of the nucleotide pool. J Biol Chem. 1978 Dec 25;253(24):8741–8746. [PubMed] [Google Scholar]
  13. Kirchman D., Ducklow H., Mitchell R. Estimates of bacterial growth from changes in uptake rates and biomass. Appl Environ Microbiol. 1982 Dec;44(6):1296–1307. doi: 10.1128/aem.44.6.1296-1307.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lin R. I., Schjeide O. A. Micro estimation of RNA by the cupric ion catalyzed orcinol reaction. Anal Biochem. 1969 Mar;27(3):473–483. doi: 10.1016/0003-2697(69)90061-x. [DOI] [PubMed] [Google Scholar]
  15. Mueller K., Bremer H. Rate of synthesis of messenger ribonucleic acid in Escherichia coli. J Mol Biol. 1968 Dec;38(3):329–353. doi: 10.1016/0022-2836(68)90390-2. [DOI] [PubMed] [Google Scholar]
  16. Summerton J. E., Norling R. A. Computer simulation as an aid in the experimental characterization of the compartmentation of ribonucleic acid precursor in E. coli. Comput Biomed Res. 1974 Aug;7(4):305–324. doi: 10.1016/0010-4809(74)90009-3. [DOI] [PubMed] [Google Scholar]
  17. Wiegers U., Kramer G., Klapproth K., Hilz H. Separate pyrimidine-nucleotide pools for messenger-RNA and ribosomal-RNA synthesis in HeLa S3 cells. Eur J Biochem. 1976 May 1;64(2):535–540. doi: 10.1111/j.1432-1033.1976.tb10333.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES