Abstract
Varicella-zoster virus (VZV), adapted to grow in guinea pig fibroblasts, was injected subcutaneously into Hartley, strain 2, and strain 13 guinea pigs. Serum immunoglobulin G antibodies were detected 2 weeks later, and T-cell proliferative responses by blood lymphocytes were found 3 weeks after injection. The proliferating cells bound the 155 antibody, which defines a CD4-like subset of guinea pig T lymphocytes. VZV-infected fibroblasts of human, Hartley, and strain 13 origin elicited equivalent amounts of proliferation, which was quantitatively greater than that obtained with an extracted VZV antigen. Uninfected (control) human or guinea pig fibroblasts did not elicit T-cell proliferation. The proliferative response to VZV required the presence of autologous (strain 2 or 13) antigen-presenting cells and was blocked by the addition of an anti-class II major histocompatibility complex antibody. Effector cells obtained from in vitro cultures mediated class II-restricted cytotoxicity to L2C cells incubated with VZV. Class I-restricted responses were obtained only by cross-priming strain 2 animals with strain 13 peritoneal exudate cells which had been preincubated with VZV. The data indicate that guinea pigs resemble humans in that class II-restricted T cells with specificity for VZV are more readily cultured from blood than are class I-restricted cells.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arvin A. M., Solem S. M., Koropchak C. M., Kinney-Thomas E., Paryani S. G. Humoral and cellular immunity to varicella-zoster virus glycoprotein gpI and to a non-glycosylated protein, p170, in the strain 2 guinea-pig. J Gen Virol. 1987 Sep;68(Pt 9):2449–2454. doi: 10.1099/0022-1317-68-9-2449. [DOI] [PubMed] [Google Scholar]
- Berger R., Florent G., Just M. Decrease of the lymphoproliferative response to varicella-zoster virus antigen in the aged. Infect Immun. 1981 Apr;32(1):24–27. doi: 10.1128/iai.32.1.24-27.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berger R., Luescher D., Just M. Enhancement of varicella-zoster-specific immune responses in the elderly by boosting with varicella vaccine. J Infect Dis. 1984 Apr;149(4):647–647. doi: 10.1093/infdis/149.4.647. [DOI] [PubMed] [Google Scholar]
- Bevan M. J. Minor H antigens introduced on H-2 different stimulating cells cross-react at the cytotoxic T cell level during in vivo priming. J Immunol. 1976 Dec;117(6):2233–2238. [PubMed] [Google Scholar]
- Bowden R. A., McGavren L., Hayward A. R., Levin M. J. Use of bone marrow fibroblasts to prepare targets for an HLA restricted-cytotoxicity assay system. J Clin Microbiol. 1984 Oct;20(4):696–700. doi: 10.1128/jcm.20.4.696-700.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burger R., Clement L., Schroer J., Chiba J., Shevach E. M. Monoclonal antibodies to guinea pig Ia antigens. I. Production, serologic, and immunochemical characterization. J Immunol. 1981 Jan;126(1):32–37. [PubMed] [Google Scholar]
- Burger R., Schrod L., Schaefer H. Functionally relevant membrane proteins of human and guinea-pig T lymphocytes. Mol Immunol. 1986 Nov;23(11):1149–1156. doi: 10.1016/0161-5890(86)90145-8. [DOI] [PubMed] [Google Scholar]
- Burger R., Shevach E. M. Monoclonal antibodies to guinea pig Ia antigens. II. Effect on alloantigen-, antigen-, and mitogen-induced T lymphocyte proliferation in vitro. J Exp Med. 1980 Oct 1;152(4):1011–1023. doi: 10.1084/jem.152.4.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Croen K. D., Ostrove J. M., Dragovic L. J., Straus S. E. Patterns of gene expression and sites of latency in human nerve ganglia are different for varicella-zoster and herpes simplex viruses. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9773–9777. doi: 10.1073/pnas.85.24.9773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diaz P. S., Smith S., Hunter E., Arvin A. M. T lymphocyte cytotoxicity with natural varicella-zoster virus infection and after immunization with live attenuated varicella vaccine. J Immunol. 1989 Jan 15;142(2):636–641. [PubMed] [Google Scholar]
- Gilden D. H., Rozenman Y., Murray R., Devlin M., Vafai A. Detection of varicella-zoster virus nucleic acid in neurons of normal human thoracic ganglia. Ann Neurol. 1987 Sep;22(3):377–380. doi: 10.1002/ana.410220315. [DOI] [PubMed] [Google Scholar]
- Hayward A. R., Herberger M. Lymphocyte responses to varicella zoster virus in the elderly. J Clin Immunol. 1987 Mar;7(2):174–178. doi: 10.1007/BF00916011. [DOI] [PubMed] [Google Scholar]
- Hayward A. R., Pontesilli O., Herberger M., Laszlo M., Levin M. Specific lysis of varicella zoster virus-infected B lymphoblasts by human T cells. J Virol. 1986 Apr;58(1):179–184. doi: 10.1128/jvi.58.1.179-184.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayward A., Giller R., Levin M. Phenotype, cytotoxic, and helper functions of T cells from varicella zoster virus stimulated cultures of human lymphocytes. Viral Immunol. 1989 Fall;2(3):175–184. doi: 10.1089/vim.1989.2.175. [DOI] [PubMed] [Google Scholar]
- Hickling J. K., Borysiewicz L. K., Sissons J. G. Varicella-zoster virus-specific cytotoxic T lymphocytes (Tc): detection and frequency analysis of HLA class I-restricted Tc in human peripheral blood. J Virol. 1987 Nov;61(11):3463–3469. doi: 10.1128/jvi.61.11.3463-3469.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hosken N. A., Bevan M. J., Carbone F. R. Class I-restricted presentation occurs without internalization or processing of exogenous antigenic peptides. J Immunol. 1989 Feb 15;142(4):1079–1083. [PubMed] [Google Scholar]
- Jenski L., Myers M. G. Cell-mediated immunity to varicella-zoster virus infection in strain 2 guinea pigs. J Med Virol. 1987 Sep;23(1):23–30. doi: 10.1002/jmv.1890230104. [DOI] [PubMed] [Google Scholar]
- Kurnick J. T., Hayward A. R., Altevogt P. Helper and suppressor-inducer activity of human T cells and their cloned progeny maintained in long-term culture. J Immunol. 1981 Apr;126(4):1307–1311. [PubMed] [Google Scholar]
- Myers M. G., Duer H. L., Hausler C. K. Experimental infection of guinea pigs with varicella-zoster virus. J Infect Dis. 1980 Sep;142(3):414–420. doi: 10.1093/infdis/142.3.414. [DOI] [PubMed] [Google Scholar]
- Myers M. G., Stanberry L. R., Edmond B. J. Varicella-zoster virus infection of strain 2 guinea pigs. J Infect Dis. 1985 Jan;151(1):106–113. doi: 10.1093/infdis/151.1.106. [DOI] [PubMed] [Google Scholar]
- Nash A. A., Jayasuriya A., Phelan J., Cobbold S. P., Waldmann H., Prospero T. Different roles for L3T4+ and Lyt 2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system. J Gen Virol. 1987 Mar;68(Pt 3):825–833. doi: 10.1099/0022-1317-68-3-825. [DOI] [PubMed] [Google Scholar]
- Pontesilli O., Carotenuto P., Levin M. J., Suez D., Hayward A. R. Processing and presentation of cell-associated varicella-zoster virus antigens by human monocytes. Clin Exp Immunol. 1987 Oct;70(1):127–135. [PMC free article] [PubMed] [Google Scholar]
- Shimonkevitz R., Colon S., Kappler J. W., Marrack P., Grey H. M. Antigen recognition by H-2-restricted T cells. II. A tryptic ovalbumin peptide that substitutes for processed antigen. J Immunol. 1984 Oct;133(4):2067–2074. [PubMed] [Google Scholar]
- Tan B. T., Ekelaar F., Luirink J., Rimmelzwaan G., De Jonge A. J., Scheper R. J. Production of monoclonal antibodies defining guinea pig T-cell surface markers and a strain 13 Ia-like antigen: the value of immunohistological screening. Hybridoma. 1985 Summer;4(2):115–124. doi: 10.1089/hyb.1985.4.115. [DOI] [PubMed] [Google Scholar]
- Zaia J. A., Leary P. L., Levin M. J. Specificity of the blastogenic response of human mononuclear cells to herpesvirus antigens. Infect Immun. 1978 Jun;20(3):646–651. doi: 10.1128/iai.20.3.646-651.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
