Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1992 Nov;66(11):6502–6508. doi: 10.1128/jvi.66.11.6502-6508.1992

Epitope specificity of protective lactogenic immunity against swine transmissible gastroenteritis virus.

M De Diego 1, M D Laviada 1, L Enjuanes 1, J M Escribano 1
PMCID: PMC240143  PMID: 1383566

Abstract

The epitope specificity of the protective immune response against swine transmissible gastroenteritis (TGE) has been investigated by using circulating and secretory antibodies. This study was carried out with sows vaccinated with TGEV or the antigenically related porcine respiratory coronavirus (PRCV). TGEV vaccination of sows resulted in greater lactogenic protection of suckling piglets against TGEV challenge and a higher secretory immune response than PRCV vaccination did. These differences in the immune response were conditioned by the route of antigen presentation as a result of the different tropism of each virus. Epitopes on S protein, and in particular those contained in its antigenic site. A, were more immunogenic than epitopes on N and M proteins in both groups of vaccinated sows, as determined by a competitive radioimmunoassay. Minor differences in antibody response against the previously defined antigenic subsites Aa, Ab, and Ac were also detected, with subsite Ab being the most antigenic in both TGEV- and PRCV-immune sows. These findings suggest that antigenic site A on S protein, involved in virus neutralization, is the immunodominant site in pregnant sows that confer lactogenic protection. They also validate, in experiments with secretory antibodies, the antigenic maps made with murine monoclonal antibodies. Therefore, this antigenic site should be considered for vaccine or diagnostic development.

Full text

PDF
6502

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcaraz C., De Diego M., Pastor M. J., Escribano J. M. Comparison of a radioimmunoprecipitation assay to immunoblotting and ELISA for detection of antibody to African swine fever virus. J Vet Diagn Invest. 1990 Jul;2(3):191–196. doi: 10.1177/104063879000200307. [DOI] [PubMed] [Google Scholar]
  2. Bernard S., Bottreau E., Aynaud J. M., Have P., Szymansky J. Natural infection with the porcine respiratory coronavirus induces protective lactogenic immunity against transmissible gastroenteritis. Vet Microbiol. 1989 Nov;21(1):1–8. doi: 10.1016/0378-1135(89)90013-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Correa I., Gebauer F., Bullido M. J., Suñ C., Baay M. F., Zwaagstra K. A., Posthumus W. P., Lenstra J. A., Enjuanes L. Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. J Gen Virol. 1990 Feb;71(Pt 2):271–279. doi: 10.1099/0022-1317-71-2-271. [DOI] [PubMed] [Google Scholar]
  4. Correa I., Jiménez G., Suñ C., Bullido M. J., Enjuanes L. Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Res. 1988 Apr;10(1):77–93. doi: 10.1016/0168-1702(88)90059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cox E., Pensaert M. B., Callebaut P., van Deun K. Intestinal replication of a porcine respiratory coronavirus closely related antigenically to the enteric transmissible gastroenteritis virus. Vet Microbiol. 1990 Jun;23(1-4):237–243. doi: 10.1016/0378-1135(90)90154-N. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Escribano J. M., Tabarés E. Proteins specified by African swine fever virus: V. Identification of immediate early, early and late proteins. Arch Virol. 1987;92(3-4):221–232. doi: 10.1007/BF01317479. [DOI] [PubMed] [Google Scholar]
  7. Gebauer F., Posthumus W. P., Correa I., Suñ C., Smerdou C., Sánchez C. M., Lenstra J. A., Meloen R. H., Enjuanes L. Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. Virology. 1991 Jul;183(1):225–238. doi: 10.1016/0042-6822(91)90135-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henrickson K. J., Portner A. Antibody response in children to antigen sites on human PIV-3 HN: correlation with known epitopes mapped by monoclonal antibodies. Vaccine. 1990 Feb;8(1):75–80. doi: 10.1016/0264-410x(90)90182-l. [DOI] [PubMed] [Google Scholar]
  9. Jiménez G., Correa I., Melgosa M. P., Bullido M. J., Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralization. J Virol. 1986 Oct;60(1):131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kapke P. A., Brian D. A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology. 1986 May;151(1):41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laude H., Rasschaert D., Huet J. C. Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. J Gen Virol. 1987 Jun;68(Pt 6):1687–1693. doi: 10.1099/0022-1317-68-6-1687. [DOI] [PubMed] [Google Scholar]
  12. Laviada M. D., Videgain S. P., Moreno L., Alonso F., Enjuanes L., Escribano J. M. Expression of swine transmissible gastroenteritis virus envelope antigens on the surface of infected cells: epitopes externally exposed. Virus Res. 1990 Jul;16(3):247–254. doi: 10.1016/0168-1702(90)90051-C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moxley R. A., Olson L. D., Solorzano R. F. Relationship among transmissible gastroenteritis virus antibody titers in serum, colostrum, and milk from vaccinated sows, and protection in their suckling pigs. Am J Vet Res. 1989 Jan;50(1):119–125. [PubMed] [Google Scholar]
  14. Nowinski R. C., Lostrom M. E., Tam M. R., Stone M. R., Burnette W. N. The isolation of hybrid cell lines producing monoclonal antibodies against the p15(E) protein of ecotropic murine leukemia viruses. Virology. 1979 Feb;93(1):111–126. doi: 10.1016/0042-6822(79)90280-0. [DOI] [PubMed] [Google Scholar]
  15. Pastor M. J., Arias M., Escribano J. M. Comparison of two antigens for use in an enzyme-linked immunosorbent assay to detect African swine fever antibody. Am J Vet Res. 1990 Oct;51(10):1540–1543. [PubMed] [Google Scholar]
  16. Pensaert M., Callebaut P., Vergote J. Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis. Vet Q. 1986 Jul;8(3):257–261. doi: 10.1080/01652176.1986.9694050. [DOI] [PubMed] [Google Scholar]
  17. Rasschaert D., Laude H. The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. J Gen Virol. 1987 Jul;68(Pt 7):1883–1890. doi: 10.1099/0022-1317-68-7-1883. [DOI] [PubMed] [Google Scholar]
  18. Saif L. J., Bohl E. H. Passive immunity in transmissible gastroenteritis of swine: immunoglobulin classes of milk antibodies after oral-intranasal inoculation of sows with a live low cell culture-passaged virus. Am J Vet Res. 1979 Jan;40(1):115–117. [PubMed] [Google Scholar]
  19. Siddell S., Wege H., Ter Meulen V. The biology of coronaviruses. J Gen Virol. 1983 Apr;64(Pt 4):761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
  20. Sánchez C. M., Jiménez G., Laviada M. D., Correa I., Suñ C., Bullido M. j., Gebauer F., Smerdou C., Callebaut P., Escribano J. M. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology. 1990 Feb;174(2):410–417. doi: 10.1016/0042-6822(90)90094-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Woods R. D., Wesley R. D., Kapke P. A. Complement-dependent neutralization of transmissible gastroenteritis virus by monoclonal antibodies. Adv Exp Med Biol. 1987;218:493–500. doi: 10.1007/978-1-4684-1280-2_64. [DOI] [PubMed] [Google Scholar]
  22. Yus E., Laviada M. D., Moreno L., Castro J. M., Escribano J. M., Simarro I. Prevalencia de anticuerpos frente a virus influenza y coronavirus respiratorio en cerdos de cebo en España. Zentralbl Veterinarmed B. 1989 Sep;36(7):551–556. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES