Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1992 Nov;66(11):6655–6667. doi: 10.1128/jvi.66.11.6655-6667.1992

Transcriptional analysis of multigene family 110 of African swine fever virus.

F Almazán 1, J M Rodríguez 1, G Andrés 1, R Pérez 1, E Viñuela 1, J F Rodriguez 1
PMCID: PMC240162  PMID: 1404609

Abstract

A transcriptional analysis of the 3.2-kb region of the African swine fever virus genome containing the five members of the multigene family 110 is presented. The mRNAs corresponding to the genes studied have short leader sequences with no intervening AUG codons before the translational start site, and their 3' ends map within a conserved sequence motif formed by a stretch of seven or more consecutive thymidylate residues. The possible role of this sequence as a signal for the 3'-end formation of African swine fever virus mRNAs is discussed. While four of the genes studied are actively transcribed from the beginning of the infection until the onset of virus DNA replication, the transcription of one of the members of the multigene family 110, the L270 gene, is silenced at an earlier time. A detailed analysis, including in vitro translation of mRNAs isolated from infected Vero cells, revealed that the L270 gene belongs to a small subset of early genes, designated immediate early, whose transcription is silenced before the onset of virus DNA replication. The transcriptional data obtained enabled us to generate the first detailed transcriptional map of a region of the African swine fever virus genome, thus opening the possibility of studying the cis-acting sequences involved in transcriptional control of the viral genes.

Full text

PDF
6655

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almeida J. D., Waterson A. P., Plowright W. The morphological characteristics of African swine fever virus and its resemblance to tipula iridescent virus. Arch Gesamte Virusforsch. 1967;20(3):392–396. doi: 10.1007/BF01241958. [DOI] [PubMed] [Google Scholar]
  2. Almendral J. M., Almazán F., Blasco R., Viñuela E. Multigene families in African swine fever virus: family 110. J Virol. 1990 May;64(5):2064–2072. doi: 10.1128/jvi.64.5.2064-2072.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berk A. J., Sharp P. A. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell. 1977 Nov;12(3):721–732. doi: 10.1016/0092-8674(77)90272-0. [DOI] [PubMed] [Google Scholar]
  4. Cooper J. A., Moss B. In vitro translation of immediate early, early, and late classes of RNA from vaccinia virus-infected cells. Virology. 1979 Jul 30;96(2):368–380. doi: 10.1016/0042-6822(79)90095-3. [DOI] [PubMed] [Google Scholar]
  5. Enjuanes L., Carrascosa A. L., Moreno M. A., Viñuela E. Titration of African swine fever (ASF) virus. J Gen Virol. 1976 Sep;32(3):471–477. doi: 10.1099/0022-1317-32-3-471. [DOI] [PubMed] [Google Scholar]
  6. González A., Calvo V., Almazán F., Almendral J. M., Ramírez J. C., de la Vega I., Blasco R., Viñuela E. Multigene families in African swine fever virus: family 360. J Virol. 1990 May;64(5):2073–2081. doi: 10.1128/jvi.64.5.2073-2081.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hammond J. M., Dixon L. K. Vaccinia virus-mediated expression of African swine fever virus genes. Virology. 1991 Apr;181(2):778–782. doi: 10.1016/0042-6822(91)90917-z. [DOI] [PubMed] [Google Scholar]
  8. Kerppola T. K., Kane C. M. RNA polymerase: regulation of transcript elongation and termination. FASEB J. 1991 Oct;5(13):2833–2842. doi: 10.1096/fasebj.5.13.1916107. [DOI] [PubMed] [Google Scholar]
  9. Kuznar J., Salas M. L., Viñuela E. DNA-dependent RNA polymerase in African swine fever virus. Virology. 1980 Feb;101(1):169–175. doi: 10.1016/0042-6822(80)90493-6. [DOI] [PubMed] [Google Scholar]
  10. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  11. Luo Y., Shuman S. Antitermination of vaccinia virus early transcription: possible role of RNA secondary structure. Virology. 1991 Nov;185(1):432–436. doi: 10.1016/0042-6822(91)90793-b. [DOI] [PubMed] [Google Scholar]
  12. Moss B. Regulation of vaccinia virus transcription. Annu Rev Biochem. 1990;59:661–688. doi: 10.1146/annurev.bi.59.070190.003305. [DOI] [PubMed] [Google Scholar]
  13. Nunes J. F., Vigário J. D., Terrinha A. M. Ultrastructural study of African swine fever virus replication in cultures of swine bone marrow cells. Arch Virol. 1975;49(1):59–66. doi: 10.1007/BF02175596. [DOI] [PubMed] [Google Scholar]
  14. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  15. Proudfoot N. J. How RNA polymerase II terminates transcription in higher eukaryotes. Trends Biochem Sci. 1989 Mar;14(3):105–110. doi: 10.1016/0968-0004(89)90132-1. [DOI] [PubMed] [Google Scholar]
  16. Rodriguez J. M., Salas M. L., Viñuela E. Genes homologous to ubiquitin-conjugating proteins and eukaryotic transcription factor SII in African swine fever virus. Virology. 1992 Jan;186(1):40–52. doi: 10.1016/0042-6822(92)90059-x. [DOI] [PubMed] [Google Scholar]
  17. Rodríguez J. M., Almazán F., Viñuela E., Rodriguez J. F. Genetic manipulation of African swine fever virus: construction of recombinant viruses expressing the beta-galactosidase gene. Virology. 1992 May;188(1):67–76. doi: 10.1016/0042-6822(92)90735-8. [DOI] [PubMed] [Google Scholar]
  18. Rohrmann G., Moss B. Transcription of vaccinia virus early genes by a template-dependent soluble extract of purified virions. J Virol. 1985 Nov;56(2):349–355. doi: 10.1128/jvi.56.2.349-355.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Salas M. L., Kuznar J., Viñuela E. Polyadenylation, methylation, and capping of the RNA synthesized in vitro by African swine fever virus. Virology. 1981 Sep;113(2):484–491. doi: 10.1016/0042-6822(81)90176-8. [DOI] [PubMed] [Google Scholar]
  20. Salas M. L., Rey-Campos J., Almendral J. M., Talavera A., Viñuela E. Transcription and translation maps of African swine fever virus. Virology. 1986 Jul 15;152(1):228–240. doi: 10.1016/0042-6822(86)90387-9. [DOI] [PubMed] [Google Scholar]
  21. Santarén J. F., Viñuela E. African swine fever virus-induced polypeptides in Vero cells. Virus Res. 1986 Sep;5(4):391–405. doi: 10.1016/0168-1702(86)90031-6. [DOI] [PubMed] [Google Scholar]
  22. Shuman S., Broyles S. S., Moss B. Purification and characterization of a transcription termination factor from vaccinia virions. J Biol Chem. 1987 Sep 5;262(25):12372–12380. [PubMed] [Google Scholar]
  23. Viñuela E. African swine fever virus. Curr Top Microbiol Immunol. 1985;116:151–170. doi: 10.1007/978-3-642-70280-8_8. [DOI] [PubMed] [Google Scholar]
  24. Wardley R. C., Norley S. G., Martins C. V., Lawman M. J. The host response to African swine fever virus. Prog Med Virol. 1987;34:180–192. [PubMed] [Google Scholar]
  25. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  26. Yuen L., Moss B. Multiple 3' ends of mRNA encoding vaccinia virus growth factor occur within a series of repeated sequences downstream of T clusters. J Virol. 1986 Oct;60(1):320–323. doi: 10.1128/jvi.60.1.320-323.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yuen L., Moss B. Oligonucleotide sequence signaling transcriptional termination of vaccinia virus early genes. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6417–6421. doi: 10.1073/pnas.84.18.6417. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES