Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1984 Jul;48(1):31–35. doi: 10.1128/aem.48.1.31-35.1984

Differences Between Lipopolysaccharide Compositions of Plant Pathogenic and Saprophytic Pseudomonas Species

A J Anderson 1
PMCID: PMC240295  PMID: 16346597

Abstract

Lipopolysaccharides (LPS) were obtained by washing cells of plant pathogenic and saprophytic Pseudomonas species with saline (fraction 1) and then with saline-EDTA (fraction 2). The cells subsequently were extracted with phenol to yield a third aqueous preparation (fraction 3). Each fraction type contained the LPS components, lipid A, heptose, 2-keto-3-deoxy sugar, and neutral and amino sugars. The neutral sugar compositions of fractions 1, 2, and 3, although similar within a species, differed between the Pseudomonas species. The LPS of two pathovars (pv.) of Pseudomonas syringae had glucose and rhamnose as major components: 13 (±3)% glucose and 87 (±3)% rhamnose for P. syringae pv. pisi and 18 (±5)% glucose and 76 (±2)% rhamnose for P. syringae pv. syringae. Fucose was present in addition to glucose and rhamnose for P. syringae pv. phaseolicola (68 [±8]% rhamnose, 14 [±1]% fucose, and 14 [±5]% glucose) and P. syringae pv. tabaci (24 [±2]% rhamnose, 54 [±3]% fucose, and 17 [±1]% glucose). The LPS from different races of P. syringae pv. pisi and P. syringae pv. phaseolicola could not be distinguished by neutral sugar composition. Three saprophytic species, P. aeruginosa, P. fluorescens, and P. putida, also produced LPS which had different proportions of rhamnose, fucose, and glucose. The LPS from three isolates of P. putida were distinct in possessing a high proportion of amino sugar and containing glucose as the major neutral sugar component (86 to 100%). The LPS fractions from plant pathogenic and saprophytic Pseudomonas species did not elicit browning or phytoalexin production in treated dark red kidney bean cotyledons or red Mexican bean leaves. Rather, chlorosis of the LPS-treated leaf tissue was observed.

Full text

PDF
31

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson A. J. Unique aspects of the cell surface polysaccharide of Pseudomonas phaseolicola as demonstrated by bacteriophage specificity. Can J Microbiol. 1980 Dec;26(12):1422–1427. doi: 10.1139/m80-237. [DOI] [PubMed] [Google Scholar]
  2. Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
  3. Graham T. L., Sequeira L., Huang T. S. Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Appl Environ Microbiol. 1977 Oct;34(4):424–432. doi: 10.1128/aem.34.4.424-432.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kropinski A. M., Chan L. C., Milazzo F. H. The extraction and analysis of lipopolysaccharides from Pseudomonas aeruginosa strain PAO, and three rough mutants. Can J Microbiol. 1979 Mar;25(3):390–398. doi: 10.1139/m79-060. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Leach J. E., Cantrell M. A., Sequeira L. Hydroxyproline-rich bacterial agglutinin from potato : extraction, purification, and characterization. Plant Physiol. 1982 Nov;70(5):1353–1358. doi: 10.1104/pp.70.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. OSBORN M. J. STUDIES ON THE GRAM-NEGATIVE CELL WALL. I. EVIDENCE FOR THE ROLE OF 2-KETO- 3-DEOXYOCTONATE IN THE LIPOPOLYSACCHARIDE OF SALMONELLA TYPHIMURIUM. Proc Natl Acad Sci U S A. 1963 Sep;50:499–506. doi: 10.1073/pnas.50.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Schroth M. N., Hancock J. G. Disease-suppressive soil and root-colonizing bacteria. Science. 1982 Jun 25;216(4553):1376–1381. doi: 10.1126/science.216.4553.1376. [DOI] [PubMed] [Google Scholar]
  9. Whatley M. H., Bodwin J. S., Lippincott B. B., Lippincott J. A. Role of Agrobacterium cell envelope lipopolysaccharide in infection site attachment. Infect Immun. 1976 Apr;13(4):1080–1083. doi: 10.1128/iai.13.4.1080-1083.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Whatley M. H., Hunter N., Cantrell M. A., Hendrick C., Keegstra K., Sequeira L. Lipopolysaccharide Composition of the Wilt Pathogen, Pseudomonas solanacearum: CORRELATION WITH THE HYPERSENSITIVE RESPONSE IN TOBACCO. Plant Physiol. 1980 Mar;65(3):557–559. doi: 10.1104/pp.65.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wright B. G., Rebers P. A. Procedure for determining heptose and hexose in lipopolysaccharides. Modification of the cysteine-sulfuric acid method. Anal Biochem. 1972 Oct;49(2):307–319. doi: 10.1016/0003-2697(72)90433-2. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES