Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1992 Feb;66(2):966–970. doi: 10.1128/jvi.66.2.966-970.1992

RNA sequence variants in live poliovirus vaccine and their relation to neurovirulence.

K M Chumakov 1, L P Norwood 1, M L Parker 1, E M Dragunsky 1, Y X Ran 1, I S Levenbook 1
PMCID: PMC240798  PMID: 1309923

Abstract

Mutant analysis by polymerase chain reaction and restriction enzyme cleavage (MAPREC) was used to study sequence heterogeneity and stability in attenuated poliovirus type 3 at positions in which the vaccine virus differs from its wild-type progenitor. Of seven genomic positions tested, only two (positions 472 and 2493) show nucleotide heterogeneity. Propagation of the vaccine virus in cell cultures leads to rapid selection of virus with reversions at these two positions of the genome. The relative abundance of reversions at position 472 correlates with the results of monkey neurovirulence tests, while the mutation at position 2493 is not directly associated with neurovirulence of the virus in monkeys. Instead, the abundance of mutations at the latter position correlates with the source of the seed virus and its passage level. These results further indicate that MAPREC at position 472 can be used to assess the quality of poliovirus type 3 vaccine.

Full text

PDF
966

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chumakov K. M., Powers L. B., Noonan K. E., Roninson I. B., Levenbook I. S. Correlation between amount of virus with altered nucleotide sequence and the monkey test for acceptability of oral poliovirus vaccine. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):199–203. doi: 10.1073/pnas.88.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Evans D. M., Dunn G., Minor P. D., Schild G. C., Cann A. J., Stanway G., Almond J. W., Currey K., Maizel J. V., Jr Increased neurovirulence associated with a single nucleotide change in a noncoding region of the Sabin type 3 poliovaccine genome. Nature. 1985 Apr 11;314(6011):548–550. doi: 10.1038/314548a0. [DOI] [PubMed] [Google Scholar]
  3. Stanway G., Hughes P. J., Mountford R. C., Reeve P., Minor P. D., Schild G. C., Almond J. W. Comparison of the complete nucleotide sequences of the genomes of the neurovirulent poliovirus P3/Leon/37 and its attenuated Sabin vaccine derivative P3/Leon 12a1b. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1539–1543. doi: 10.1073/pnas.81.5.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Toyoda H., Kohara M., Kataoka Y., Suganuma T., Omata T., Imura N., Nomoto A. Complete nucleotide sequences of all three poliovirus serotype genomes. Implication for genetic relationship, gene function and antigenic determinants. J Mol Biol. 1984 Apr 25;174(4):561–585. doi: 10.1016/0022-2836(84)90084-6. [DOI] [PubMed] [Google Scholar]
  5. Westrop G. D., Wareham K. A., Evans D. M., Dunn G., Minor P. D., Magrath D. I., Taffs F., Marsden S., Skinner M. A., Schild G. C. Genetic basis of attenuation of the Sabin type 3 oral poliovirus vaccine. J Virol. 1989 Mar;63(3):1338–1344. doi: 10.1128/jvi.63.3.1338-1344.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES