Abstract
Purpose: Extracellular matrix metalloproteinase inducer (EMMPRIN) has been shown to stimulate fibroblasts to production of matrix metalloproteinases (MMPs). MMPs comprise a family of proteolytic enzymes implicated in the degradation of extracellular matrix which has been proposed to be one of the essential steps in tumor invasion and metastases. In the present study we investigated the expression and location of mRNAs for EMMPRIN, matrix metalloproteinase-2 (MMP-2), and membrane-type 1 matrix metalloproteinase (MT1-MMP) in mesenchymal tumors with different tendencies to recur or metastasize.
Subjects: Eight malignant fibrous histiocytomas (MFH), seven aggressive fibromatosis (AF), and six benign fibrous tumors (BF).
Method: The mRNA-expression of EMMPRIN, MMP-2 and MT1-MMP were studied using mRNA in situ hybridization technique.
Results: The mRNA-expression of EMMPRIN, MMP-2 and MT1-MMP respectively were found at varying frequency and level in all tumor types. The mRNAs corresponding to EMMPRIN and MMP-2 were seen in neoplastic cells as well as in endothelial cells both inside and outside the tumor pseudo-capsule, whereas MT1-MMP was seen only within the tumors. The estimated mRNA levels of EMMPRIN and MMP-2 covariated significantly. Overall, the highest expression was found in the MFH tumors and the lowest levels in the BF tumors.
Discussion: These findings suggest that the MMP-inducer EMMPRIN and the extracellular matrix degrading system involving the metalloproteinases MMP-2 and MT1-MMP is frequently activated in mesenchymal tumors. The covariation between EMMPRIN and MMP-2 support previous findings that EMMPRIN may be an inducer of MMP-2. The high levels of MMP-2 mRNA in MFH indicate a relationship between the proteolytic activity of MMP-2 and the tumor aggressiveness.
Full Text
The Full Text of this article is available as a PDF (831.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angervall L., Kindblom L. G., Rydholm A., Stener B. The diagnosis and prognosis of soft tissue tumors. Semin Diagn Pathol. 1986 Nov;3(4):240–258. [PubMed] [Google Scholar]
- Biswas C., Zhang Y., DeCastro R., Guo H., Nakamura T., Kataoka H., Nabeshima K. The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res. 1995 Jan 15;55(2):434–439. [PubMed] [Google Scholar]
- Chambers A. F., Matrisian L. M. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 1997 Sep 3;89(17):1260–1270. doi: 10.1093/jnci/89.17.1260. [DOI] [PubMed] [Google Scholar]
- Collier I. E., Wilhelm S. M., Eisen A. Z., Marmer B. L., Grant G. A., Seltzer J. L., Kronberger A., He C. S., Bauer E. A., Goldberg G. I. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem. 1988 May 15;263(14):6579–6587. [PubMed] [Google Scholar]
- Dalberg K., Eriksson E., Enberg U., Kjellman M., Bäckdahl M. Gelatinase A, membrane type 1 matrix metalloproteinase, and extracellular matrix metalloproteinase inducer mRNA expression: correlation with invasive growth of breast cancer. World J Surg. 2000 Mar;24(3):334–340. doi: 10.1007/s002689910053. [DOI] [PubMed] [Google Scholar]
- Duffy M. J. Inhibiting tissue invasion and metastasis as targets for cancer therapy. Biotherapy. 1992;4(1):45–52. doi: 10.1007/BF02171709. [DOI] [PubMed] [Google Scholar]
- Duffy M. J., McCarthy K. Matrix metalloproteinases in cancer: prognostic markers and targets for therapy (review). Int J Oncol. 1998 Jun;12(6):1343–1348. doi: 10.3892/ijo.12.6.1343. [DOI] [PubMed] [Google Scholar]
- Guo H., Zucker S., Gordon M. K., Toole B. P., Biswas C. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J Biol Chem. 1997 Jan 3;272(1):24–27. [PubMed] [Google Scholar]
- Hurskainen T., Soini Y., Tuuttila A., Höyhtyä M., Oikarinen A., Autio-Harmainen H. Expression of the tissue metalloproteinase inhibitors TIMP-1 and TIMP-2 in malignant fibrous histiocytomas and dermatofibromas as studied by in situ hybridization and immunohistochemistry. Hum Pathol. 1996 Jan;27(1):42–49. doi: 10.1016/s0046-8177(96)90136-7. [DOI] [PubMed] [Google Scholar]
- Imanishi Y., Fujii M., Tokumaru Y., Tomita T., Kanke M., Kanzaki J., Kameyama K., Otani Y., Sato H. Clinical significance of expression of membrane type 1 matrix metalloproteinase and matrix metalloproteinase-2 in human head and neck squamous cell carcinoma. Hum Pathol. 2000 Aug;31(8):895–904. doi: 10.1053/hupa.2000.9756. [DOI] [PubMed] [Google Scholar]
- Kähäri V. M., Saarialho-Kere U. Matrix metalloproteinases and their inhibitors in tumour growth and invasion. Ann Med. 1999 Feb;31(1):34–45. doi: 10.3109/07853899909019260. [DOI] [PubMed] [Google Scholar]
- Le Doussal V., Coindre J. M., Leroux A., Hacene K., Terrier P., Bui N. B., Bonichon F., Collin F., Mandard A. M., Contesso G. Prognostic factors for patients with localized primary malignant fibrous histiocytoma: a multicenter study of 216 patients with multivariate analysis. Cancer. 1996 May 1;77(9):1823–1830. doi: 10.1002/(SICI)1097-0142(19960501)77:9<1823::AID-CNCR10>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
- Melchiori A., Albini A., Ray J. M., Stetler-Stevenson W. G. Inhibition of tumor cell invasion by a highly conserved peptide sequence from the matrix metalloproteinase enzyme prosegment. Cancer Res. 1992 Apr 15;52(8):2353–2356. [PubMed] [Google Scholar]
- Miyauchi T., Kanekura T., Yamaoka A., Ozawa M., Miyazawa S., Muramatsu T. Basigin, a new, broadly distributed member of the immunoglobulin superfamily, has strong homology with both the immunoglobulin V domain and the beta-chain of major histocompatibility complex class II antigen. J Biochem. 1990 Feb;107(2):316–323. doi: 10.1093/oxfordjournals.jbchem.a123045. [DOI] [PubMed] [Google Scholar]
- Miyauchi T., Masuzawa Y., Muramatsu T. The basigin group of the immunoglobulin superfamily: complete conservation of a segment in and around transmembrane domains of human and mouse basigin and chicken HT7 antigen. J Biochem. 1991 Nov;110(5):770–774. doi: 10.1093/oxfordjournals.jbchem.a123657. [DOI] [PubMed] [Google Scholar]
- Pritchard D. J., Reiman H. M., Turcotte R. E., Ilstrup D. M. Malignant fibrous histiocytoma of the soft tissues of the trunk and extremities. Clin Orthop Relat Res. 1993 Apr;(289):58–65. [PubMed] [Google Scholar]
- Röser B., Willén H., Gustafson P., Alvegård T. A., Rydholm A. Malignant fibrous histiocytoma of soft tissue. A population-based epidemiologic and prognostic study of 137 patients. Cancer. 1991 Jan 15;67(2):499–505. doi: 10.1002/1097-0142(19910115)67:2<499::aid-cncr2820670230>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
- Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994 Jul 7;370(6484):61–65. doi: 10.1038/370061a0. [DOI] [PubMed] [Google Scholar]
- Soini Y., Salo T., Oikarinen A., Autio-Harmainen H. Expression of 72 kilodalton and 92 kilodalton type IV collagenase in malignant fibrous histiocytomas and dermatofibromas. Lab Invest. 1993 Sep;69(3):305–311. [PubMed] [Google Scholar]
- Tomita T., Iwata K. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in colonic adenomas-adenocarcinomas. Dis Colon Rectum. 1996 Nov;39(11):1255–1264. doi: 10.1007/BF02055119. [DOI] [PubMed] [Google Scholar]
- Weiss S. W., Enzinger F. M. Malignant fibrous histiocytoma: an analysis of 200 cases. Cancer. 1978 Jun;41(6):2250–2266. doi: 10.1002/1097-0142(197806)41:6<2250::aid-cncr2820410626>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
- Zedenius J., Ståhle-Bäckdahl M., Enberg U., Grimelius L., Larsson C., Wallin G., Bäckdahl M. Stromal fibroblasts adjacent to invasive thyroid tumors: expression of gelatinase A but not stromelysin 3 mRNA. World J Surg. 1996 Jan;20(1):101–106. doi: 10.1007/s002689900018. [DOI] [PubMed] [Google Scholar]