Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1992 Mar;66(3):1449–1457. doi: 10.1128/jvi.66.3.1449-1457.1992

Highly efficient focus formation by Rous sarcoma virus on adenovirus type 12 E1A-transformed rat 3Y1 cells.

K Shiroki 1, M Hamaguchi 1, S Kawai 1
PMCID: PMC240869  PMID: 1310757

Abstract

When rat 3Y1 cells were infected with Rous sarcoma virus (RSV) variant SR-RSV-D(H), many 3Y1 cells acquired a stable provirus but only few of them formed transformed foci. In contrast, 12E1AY cells (3Y1 cells expressing the adenovirus type 12 [Ad12] E1A protein) formed transformed foci upon RSV infection with the same high frequency as did chicken embryo fibroblast cells. This enhancement of focus-forming efficiency was specifically observed in 3Y1 cells expressing Ad12 E1A protein but was not observed in 3Y1 cells expressing simian virus 40 T, c-myc, p53, c-fos, or v-fos protein. This enhancement was not evident in 5E1AY cells (3Y1 cells expressing the Ad5 E1A protein). Judging from the experiment using Ad12-Ad5 hybird E1A DNAs, the N-terminal half of the Ad12 E1A protein was responsible for this enhancement. The promoter activity of the RSV long terminal repeat measured by pLTR-CAT did not correlate to the efficiency of focus formation by RSV in these 3Y1 cells. Moreover, RSV containing the neo gene instead of the src gene produced G418-resistant cells equally efficiently among 3Y1, E1AY, and chicken embryo fibroblast cells. These results suggest that the enhancement of focus formation by RSV is not due to the increased expression of the src gene by the E1A protein. src mRNA and src protein were lower in RSV-transformed E1AY (RSVE1AY) cells than in RSV-transformed 3Y1 (RSV3Y1) cells. The phosphotyrosine-containing proteins were also less abundant in RSVE1AY cells than in RSV3Y1 cells, suggesting that E1AY cells require a lower threshold dose of p60v-src for transformation than do 3Y1 cells. E1AY cells were found to be more sensitive to lysis by detergents. The results suggest that the enhancement is due to changes in membrane structures in E1AY cells.

Full text

PDF
1449

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellgrau D., Walker T. A., Cook J. L. Recognition of adenovirus E1A gene products on immortalized cell surfaces by cytotoxic T lymphocytes. J Virol. 1988 May;62(5):1513–1519. doi: 10.1128/jvi.62.5.1513-1519.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen M. J., Holskin B., Strickler J., Gorniak J., Clark M. A., Johnson P. J., Mitcho M., Shalloway D. Induction by E1A oncogene expression of cellular susceptibility to lysis by TNF. Nature. 1987 Dec 10;330(6148):581–583. doi: 10.1038/330581a0. [DOI] [PubMed] [Google Scholar]
  3. Curran T., Peters G., Van Beveren C., Teich N. M., Verma I. M. FBJ murine osteosarcoma virus: identification and molecular cloning of biologically active proviral DNA. J Virol. 1982 Nov;44(2):674–682. doi: 10.1128/jvi.44.2.674-682.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Green A. R., Searle S., Gillespie D. A., Bissell M., Wyke J. A. Expression of integrated Rous sarcoma viruses: DNA rearrangements 5' to the provirus are common in transformed rat cells but not seen in infected but untransformed cells. EMBO J. 1986 Apr;5(4):707–711. doi: 10.1002/j.1460-2075.1986.tb04271.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hamaguchi M., Grandori C., Hanafusa H. Phosphorylation of cellular proteins in Rous sarcoma virus-infected cells: analysis by use of anti-phosphotyrosine antibodies. Mol Cell Biol. 1988 Aug;8(8):3035–3042. doi: 10.1128/mcb.8.8.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hamaguchi M., Hanafusa H. Association of p60src with Triton X-100-resistant cellular structure correlates with morphological transformation. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2312–2316. doi: 10.1073/pnas.84.8.2312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamaguchi M., Matsuda M., Hanafusa H. A glycoprotein in the plasma membrane matrix as a major potential substrate of p60v-src. Mol Cell Biol. 1990 Feb;10(2):830–836. doi: 10.1128/mcb.10.2.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iba H., Cross F. R., Garber E. A., Hanafusa H. Low level of cellular protein phosphorylation by nontransforming overproduced p60c-src. Mol Cell Biol. 1985 May;5(5):1058–1066. doi: 10.1128/mcb.5.5.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ikezaki K., Akiyama S., Miyazaki C., Kimura G., Kuwano M. Imidazole-resistant phenotype and virus transformation in cultured rat cells. Cancer Res. 1984 May;44(5):1791–1795. [PubMed] [Google Scholar]
  11. Jochemsen A. G., Bos J. L., van der Eb A. J. The first exon of region E1a genes of adenoviruses 5 and 12 encodes a separate functional protein domain. EMBO J. 1984 Dec 1;3(12):2923–2927. doi: 10.1002/j.1460-2075.1984.tb02233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kast W. M., Offringa R., Peters P. J., Voordouw A. C., Meloen R. H., van der Eb A. J., Melief C. J. Eradication of adenovirus E1-induced tumors by E1A-specific cytotoxic T lymphocytes. Cell. 1989 Nov 17;59(4):603–614. doi: 10.1016/0092-8674(89)90006-8. [DOI] [PubMed] [Google Scholar]
  13. Kawai S., Koyama T. Characterization of a Rous sarcoma virus mutant defective in packaging its own genomic RNA: biological properties of mutant TK15 and mutant-induced transformants. J Virol. 1984 Jul;51(1):147–153. doi: 10.1128/jvi.51.1.147-153.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kawai S., Nishizawa M., Shinno-Kohno H., Shiroki K. A variant Schmidt-Ruppin strain of Rous sarcoma virus with increased affinity for mammalian cells. Jpn J Cancer Res. 1989 Dec;80(12):1179–1185. doi: 10.1111/j.1349-7006.1989.tb01652.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kimura G., Itagaki A., Summers J. Rat cell line 3y1 and its virogenic polyoma- and sv40- transformed derivatives. Int J Cancer. 1975 Apr 15;15(4):694–706. doi: 10.1002/ijc.2910150419. [DOI] [PubMed] [Google Scholar]
  16. Kozma L. M., Reynolds A. B., Weber M. J. Glycoprotein tyrosine phosphorylation in Rous sarcoma virus-transformed chicken embryo fibroblasts. Mol Cell Biol. 1990 Feb;10(2):837–841. doi: 10.1128/mcb.10.2.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levantis P., Gillespie D. A., Hart K., Bissell M. J., Wyke J. A. Control of expression of an integrated Rous sarcoma provirus in rat cells: role of 5' genomic duplications reveals unexpected patterns of gene transcription and its regulation. J Virol. 1986 Mar;57(3):907–916. doi: 10.1128/jvi.57.3.907-916.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lipsich L. A., Lewis A. J., Brugge J. S. Isolation of monoclonal antibodies that recognize the transforming proteins of avian sarcoma viruses. J Virol. 1983 Nov;48(2):352–360. doi: 10.1128/jvi.48.2.352-360.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nakakuma H., Sanai Y., Shiroki K., Nagai Y. Gene-regulated expression of glycolipids: appearance of GD3 ganglioside in rat cells on transfection with transforming gene E1 of human adenovirus type 12 DNA and its transcriptional subunits. J Biochem. 1984 Nov;96(5):1471–1480. doi: 10.1093/oxfordjournals.jbchem.a134976. [DOI] [PubMed] [Google Scholar]
  20. Onodera K., Okubo A., Yasumoto K., Suzuki T., Kimura G., Nomoto K. 31P nuclear magnetic resonance analysis of lung cancer: the perchloric acid extract spectrum. Jpn J Cancer Res. 1986 Dec;77(12):1201–1206. [PubMed] [Google Scholar]
  21. Parsons J. T., Weber M. J. Genetics of src: structure and functional organization of a protein tyrosine kinase. Curr Top Microbiol Immunol. 1989;147:79–127. doi: 10.1007/978-3-642-74697-0_3. [DOI] [PubMed] [Google Scholar]
  22. Perricaudet M., le Moullec J. M., Tiollais P., Pettersson U. Structure of two adenovirus type 12 transforming polypeptides and their evolutionary implications. Nature. 1980 Nov 13;288(5787):174–176. doi: 10.1038/288174a0. [DOI] [PubMed] [Google Scholar]
  23. Quintrell N., Hughes S. H., Varmus H. E., Bishop J. M. Structure of viral DNA and RNA in mammalian cells infected with avian sarcoma virus. J Mol Biol. 1980 Nov 15;143(4):363–393. doi: 10.1016/0022-2836(80)90218-1. [DOI] [PubMed] [Google Scholar]
  24. Resh M. D., Ling H. P. Identification of a 32K plasma membrane protein that binds to the myristylated amino-terminal sequence of p60v-src. Nature. 1990 Jul 5;346(6279):84–86. doi: 10.1038/346084a0. [DOI] [PubMed] [Google Scholar]
  25. Resh M. D. Specific and saturable binding of pp60v-src to plasma membranes: evidence for a myristyl-src receptor. Cell. 1989 Jul 28;58(2):281–286. doi: 10.1016/0092-8674(89)90842-8. [DOI] [PubMed] [Google Scholar]
  26. Shalloway D., Johnson P. J., Freed E. O., Coulter D., Flood W. A., Jr Transformation of NIH 3T3 cells by cotransfection with c-src and nuclear oncogenes. Mol Cell Biol. 1987 Oct;7(10):3582–3590. doi: 10.1128/mcb.7.10.3582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shimura H., Matsuzaki A., Shiroki K., Ohtsu M., Fujinaga K., Onodera K., Kimura G. The high sensitivity of cells transformed by E1A gene of adenovirus type 12 to diacylglycerol-mediated cell killing. Cancer Lett. 1989 Feb;44(2):143–149. doi: 10.1016/0304-3835(89)90009-8. [DOI] [PubMed] [Google Scholar]
  28. Shimura H., Ohtsu M., Matsuzaki A., Mitsudomi T., Onodera K., Kimura G. Selective cytotoxicity of phospholipids and diacylglycerols to rat 3Y1 fibroblasts transformed by adenovirus type 12 or its E1A gene. Cancer Res. 1988 Feb 1;48(3):578–583. [PubMed] [Google Scholar]
  29. Shiroki K., Kato H., Kawai S. Tandemly repeated hexamer sequences within the beta interferon promoter can function as an inducible regulatory element in activation by the adenovirus E1B 19-kilodalton protein. J Virol. 1990 Jun;64(6):3063–3068. doi: 10.1128/jvi.64.6.3063-3068.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shiroki K., Segawa K., Koita Y., Shibuya M. Neoplastic transformation of rat 3Y1 cells by a transcriptionally activated human c-myc gene and stabilization of p53 cellular tumor antigen in the transformed cells. Mol Cell Biol. 1986 Dec;6(12):4379–4386. doi: 10.1128/mcb.6.12.4379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shiroki K., Toth M. Activation of the human beta interferon gene by the adenovirus type 12 E1B gene. J Virol. 1988 Jan;62(1):325–330. doi: 10.1128/jvi.62.1.325-330.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  33. Sugano S., Yamaguchi N. Two classes of transformation-deficient, immortalization-positive simian virus 40 mutants constructed by making three-base insertions in the T antigen gene. J Virol. 1984 Dec;52(3):884–891. doi: 10.1128/jvi.52.3.884-891.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Takebe Y., Seiki M., Fujisawa J., Hoy P., Yokota K., Arai K., Yoshida M., Arai N. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 1988 Jan;8(1):466–472. doi: 10.1128/mcb.8.1.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Urbanelli D., Sawada Y., Raskova J., Jones N. C., Shenk T., Raska K., Jr C-terminal domain of the adenovirus E1A oncogene product is required for induction of cytotoxic T lymphocytes and tumor-specific transplantation immunity. Virology. 1989 Dec;173(2):607–614. doi: 10.1016/0042-6822(89)90572-2. [DOI] [PubMed] [Google Scholar]
  36. Zakut-Houri R., Oren M., Bienz B., Lavie V., Hazum S., Givol D. A single gene and a pseudogene for the cellular tumour antigen p53. Nature. 1983 Dec 8;306(5943):594–597. doi: 10.1038/306594a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES