Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1991 Jun;65(6):2839–2844. doi: 10.1128/jvi.65.6.2839-2844.1991

Detection of rabies virus genomic RNA and mRNA in mouse and human brains by using in situ hybridization.

A C Jackson 1, W H Wunner 1
PMCID: PMC240905  PMID: 2033657

Abstract

Rabies virus RNA was detected in mouse and human brains by in situ hybridization. 3H-labeled single-stranded RNA probes were prepared which were specific for genomic RNA and mRNAs coding for the five rabies virus proteins (N, NS, M, G, and L). Paraffin-embedded brain tissues from human cases of rabies and mice experimentally infected with the challenge virus standard (CVS)-11 strain of rabies virus and street rabies virus were examined. In CVS-infected mice, genomic RNA had a multifocal distribution in the perikarya of infected neurons, perhaps reflecting concentration of genomic RNA in viral factories. The mRNAs were more abundant than genomic RNAs in CVS- and street virus-infected mouse brains and had a diffuse distribution in the perikarya. Similar amounts of signal were present in infected neurons for mRNAs coding for different rabies virus proteins. In brain tissues from human cases of rabies, genomic RNA was much more abundant than the mRNAs in infected neurons. This finding suggests either a relative block at the level of transcription or greater loss of mRNAs than of genomic RNA during the agonal period, postmortem interval, or prior to penetration of fixative during immersion fixation.

Full text

PDF
2839

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai H., Noguchi I., Sagi N., Moroji T., Iizuka R. A study of non-isotopic in situ hybridization histochemistry on postmortem changes in vasopressin mRNA in rat brain. Neurosci Lett. 1989 Aug 28;103(2):127–132. doi: 10.1016/0304-3940(89)90563-6. [DOI] [PubMed] [Google Scholar]
  2. Banerjee A. K., Chattopadhyay D. Structure and function of the RNA polymerase of vesicular stomatitis virus. Adv Virus Res. 1990;38:99–124. doi: 10.1016/s0065-3527(08)60860-x. [DOI] [PubMed] [Google Scholar]
  3. Cox K. H., DeLeon D. V., Angerer L. M., Angerer R. C. Detection of mrnas in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol. 1984 Feb;101(2):485–502. doi: 10.1016/0012-1606(84)90162-3. [DOI] [PubMed] [Google Scholar]
  4. Ermine A., Tordo N., Tsiang H. Rapid diagnosis of rabies infection by means of a dot hybridization assay. Mol Cell Probes. 1988 Mar;2(1):75–82. doi: 10.1016/0890-8508(88)90046-1. [DOI] [PubMed] [Google Scholar]
  5. Feiden W., Feiden U., Gerhard L., Reinhardt V., Wandeler A. Rabies encephalitis: immunohistochemical investigations. Clin Neuropathol. 1985 Jul-Aug;4(4):156–164. [PubMed] [Google Scholar]
  6. Feiden W., Kaiser E., Gerhard L., Dahme E., Gylstorff B., Wandeler A., Ehrensberger F. Immunohistochemical staining of rabies virus antigen with monoclonal and polyclonal antibodies in paraffin tissue sections. Zentralbl Veterinarmed B. 1988 May;35(4):247–255. doi: 10.1111/j.1439-0450.1988.tb00494.x. [DOI] [PubMed] [Google Scholar]
  7. Flamand A., Delagneau J. F. Transcriptional mapping of rabies virus in vivo. J Virol. 1978 Nov;28(2):518–523. doi: 10.1128/jvi.28.2.518-523.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harrison P. J., Pearson R. C. In situ hybridization histochemistry and the study of gene expression in the human brain. Prog Neurobiol. 1990;34(4):271–312. doi: 10.1016/0301-0082(90)90007-4. [DOI] [PubMed] [Google Scholar]
  9. Iverson L. E., Rose J. K. Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell. 1981 Feb;23(2):477–484. doi: 10.1016/0092-8674(81)90143-4. [DOI] [PubMed] [Google Scholar]
  10. Jackson A. C., Reimer D. L., Wunner W. H. Detection of rabies virus RNA in the central nervous system of experimentally infected mice using in situ hybridization with RNA probes. J Virol Methods. 1989 Jul;25(1):1–11. doi: 10.1016/0166-0934(89)90095-5. [DOI] [PubMed] [Google Scholar]
  11. Larson J. K., Wunner W. H. Nucleotide and deduced amino acid sequences of the nominal nonstructural phosphoprotein of the ERA, PM and CVS-11 strains of rabies virus. Nucleic Acids Res. 1990 Dec 11;18(23):7172–7172. doi: 10.1093/nar/18.23.7172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rayssiguier C., Cioe L., Withers E., Wunner W. H., Curtis P. J. Cloning of rabies virus matrix protein mRNA and determination of its amino acid sequence. Virus Res. 1986 Aug;5(2-3):177–190. doi: 10.1016/0168-1702(86)90016-x. [DOI] [PubMed] [Google Scholar]
  13. Sokol F., Stancek D., Koprowski H. Structural proteins of rabies virus. J Virol. 1971 Feb;7(2):241–249. doi: 10.1128/jvi.7.2.241-249.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tordo N., Poch O., Ermine A., Keith G., Rougeon F. Completion of the rabies virus genome sequence determination: highly conserved domains among the L (polymerase) proteins of unsegmented negative-strand RNA viruses. Virology. 1988 Aug;165(2):565–576. doi: 10.1016/0042-6822(88)90600-9. [DOI] [PubMed] [Google Scholar]
  15. Verma A. K., Maheswari M. C., Chawdhary C., Tickoo S. Acute ascending motor paralysis due to rabies: a clinicopathological report. Eur Neurol. 1985;24(3):160–162. doi: 10.1159/000115789. [DOI] [PubMed] [Google Scholar]
  16. Villarreal L. P., Breindl M., Holland J. J. Determination of molar ratios of vesicular stomatitis virus induced RNA species in BHK21 cells. Biochemistry. 1976 Apr 20;15(8):1663–1667. doi: 10.1021/bi00653a012. [DOI] [PubMed] [Google Scholar]
  17. Wunner W. H., Larson J. K., Dietzschold B., Smith C. L. The molecular biology of rabies viruses. Rev Infect Dis. 1988 Nov-Dec;10 (Suppl 4):S771–S784. doi: 10.1093/clinids/10.supplement_4.s771. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES