Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1992 Jun;66(6):3869–3872. doi: 10.1128/jvi.66.6.3869-3872.1992

Comparison of the sequence of the gene encoding African swine fever virus attachment protein p12 from field virus isolates and viruses passaged in tissue culture.

A Angulo 1, E Viñuela 1, A Alcamí 1
PMCID: PMC241172  PMID: 1583733

Abstract

Comparison of the amino acid sequence of the African swine fever virus attachment protein p12 from different field virus isolates, deduced from the nucleotide sequence of the gene, revealed a high degree of conservation. No mutations were found after adaptation to Vero cells, and a polypeptide with similar characteristics was present in an IBRS2-adapted virus. The sequence of the 5' flanking region was conserved among the isolates, whereas sequences downstream of the gene were highly variable in length and contained direct repeats in tandem that may account for the deletions found in different isolates. Protein p12 was synthesized in swine macrophages infected with all of the viruses tested.

Full text

PDF
3869

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agüero M., Blasco R., Wilkinson P., Viñuela E. Analysis of naturally occurring deletion variants of African swine fever virus: multigene family 110 is not essential for infectivity or virulence in pigs. Virology. 1990 May;176(1):195–204. doi: 10.1016/0042-6822(90)90244-l. [DOI] [PubMed] [Google Scholar]
  2. Alcamí A., Angulo A., López-Otín C., Muñoz M., Freije J. M., Carrascosa A. L., Viñuela E. Amino acid sequence and structural properties of protein p12, an African swine fever virus attachment protein. J Virol. 1992 Jun;66(6):3860–3868. doi: 10.1128/jvi.66.6.3860-3868.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alcamí A., Carrascosa A. L., Viñuela E. Interaction of African swine fever virus with macrophages. Virus Res. 1990 Oct;17(2):93–104. doi: 10.1016/0168-1702(90)90071-i. [DOI] [PubMed] [Google Scholar]
  4. Alcamí A., Carrascosa A. L., Viñuela E. Saturable binding sites mediate the entry of African swine fever virus into Vero cells. Virology. 1989 Feb;168(2):393–398. doi: 10.1016/0042-6822(89)90281-x. [DOI] [PubMed] [Google Scholar]
  5. Blasco R., Agüero M., Almendral J. M., Viñuela E. Variable and constant regions in African swine fever virus DNA. Virology. 1989 Feb;168(2):330–338. doi: 10.1016/0042-6822(89)90273-0. [DOI] [PubMed] [Google Scholar]
  6. Buller R. M., Palumbo G. J. Poxvirus pathogenesis. Microbiol Rev. 1991 Mar;55(1):80–122. doi: 10.1128/mr.55.1.80-122.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carrascosa A. L., Santarén J. F., Viñuela E. Production and titration of African swine fever virus in porcine alveolar macrophages. J Virol Methods. 1982 Jan;3(6):303–310. doi: 10.1016/0166-0934(82)90034-9. [DOI] [PubMed] [Google Scholar]
  8. Carrascosa A. L., Sastre I., Viñuela E. African swine fever virus attachment protein. J Virol. 1991 May;65(5):2283–2289. doi: 10.1128/jvi.65.5.2283-2289.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Boer C. J. Studies to determine neutralizing antibody in sera from animals recovered from African swine fever and laboratory animals inoculated with African virus with adjuvants. Arch Gesamte Virusforsch. 1967;20(2):164–179. doi: 10.1007/BF01241270. [DOI] [PubMed] [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dixon L. K., Bristow C., Wilkinson P. J., Sumption K. J. Identification of a variable region of the African swine fever virus genome that has undergone separate DNA rearrangements leading to expansion of minisatellite-like sequences. J Mol Biol. 1990 Dec 5;216(3):677–688. doi: 10.1016/0022-2836(90)90391-X. [DOI] [PubMed] [Google Scholar]
  12. Enjuanes L., Carrascosa A. L., Moreno M. A., Viñuela E. Titration of African swine fever (ASF) virus. J Gen Virol. 1976 Sep;32(3):471–477. doi: 10.1099/0022-1317-32-3-471. [DOI] [PubMed] [Google Scholar]
  13. García-Barreno B., Sanz A., Nogal M. L., Viñuela E., Enjuanes L. Monoclonal antibodies of African swine fever virus: antigenic differences among field virus isolates and viruses passaged in cell culture. J Virol. 1986 May;58(2):385–392. doi: 10.1128/jvi.58.2.385-392.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Greig A. S., Boulanger P., Bannister G. L. African swine fever. V. Cultivation of the virus in primary pig kidney cells. Can J Comp Med Vet Sci. 1967 Jan;31(1):24–31. [PMC free article] [PubMed] [Google Scholar]
  15. Jackson R. J., Standart N. Do the poly(A) tail and 3' untranslated region control mRNA translation? Cell. 1990 Jul 13;62(1):15–24. doi: 10.1016/0092-8674(90)90235-7. [DOI] [PubMed] [Google Scholar]
  16. Kim S., Ikeuchi K., Groopman J., Baltimore D. Factors affecting cellular tropism of human immunodeficiency virus. J Virol. 1990 Nov;64(11):5600–5604. doi: 10.1128/jvi.64.11.5600-5604.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MALMQUIST W. A., HAY D. Hemadsorption and cytopathic effect produced by African Swine Fever virus in swine bone marrow and buffy coat cultures. Am J Vet Res. 1960 Jan;21:104–108. [PubMed] [Google Scholar]
  18. MAURER F. D., GRIESEMER R. A. The pathology of African swine fever; a comparison with hog cholera. Am J Vet Res. 1958 Jul;19(72):517–539. [PubMed] [Google Scholar]
  19. Sachs D. H., Leight G., Cone J., Schwarz S., Stuart L., Rosenberg S. Transplantation in miniature swine. I. Fixation of the major histocompatibility complex. Transplantation. 1976 Dec;22(6):559–567. doi: 10.1097/00007890-197612000-00004. [DOI] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  22. Yáez R. J., Moya A., Viñuela E., Domingo E. Repetitive nucleotide sequencing of a dispensable DNA segment in a clonal population of African swine fever virus. Virus Res. 1991 Aug;20(3):265–272. doi: 10.1016/0168-1702(91)90080-f. [DOI] [PubMed] [Google Scholar]
  23. Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. de la Vega I., Viñuela E., Blasco R. Genetic variation and multigene families in African swine fever virus. Virology. 1990 Nov;179(1):234–246. doi: 10.1016/0042-6822(90)90293-z. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES