Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1992 Jul;66(7):4161–4169. doi: 10.1128/jvi.66.7.4161-4169.1992

Intracellular processing of the paramyxovirus F protein: critical role of the predicted amphipathic alpha helix adjacent to the fusion domain.

C Wang 1, G Raghu 1, T Morrison 1, M E Peeples 1
PMCID: PMC241219  PMID: 1602539

Abstract

At a nonpermissive temperature, the group D temperature-sensitive mutants of Newcastle disease virus strain Australia-Victoria (AV) are defective in plaque formation, in inducing infected cells to fuse, and in incorporating the cleaved fusion glycoprotein, F1 + F2, into virus particles. In this study, the F protein of AV, expressed in chicken embryo cells, was able to complement these mutants in a plaque assay, identifying the F gene as the gene containing the group D temperature-sensitive lesions. The F genes of mutants D1, D2, and D3 were found to contain single mutations relative to the AV sequence, clustered within a predicted amphipathic alpha helix (AAH) adjacent to the hydrophobic amino terminus of F1. These mutant F proteins were inefficiently processed at the permissive temperature, a problem that was exacerbated at the nonpermissive temperature. Surprisingly, the AV F protein was also found to be partially temperature sensitive in processing. Its AAH is predicted to contain a break in the helix close to the D mutation sites, which are themselves predicted to further weaken the helix at this point. Interestingly, six revertants of the group D mutants were found to have an additional lesion in the AAH, repairing both the AV and mutant helices, resulting in a predicted perfect helix. The F protein of these revertants had overcome both the processing defects of the mutants and the temperature sensitivity of AV, indicating that the AAH region is critical for F protein processing. The lesions of a second group of revertants were localized within F2, suggesting an interaction with the F1 AAH region containing the original lesion.

Full text

PDF
4161

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akervall K., Strandberg B. X-ray diffraction studies of the satellite tobacco necrosis virus. 3. A new crystal mounting method allowing photographic recording of 3 A diffraction data. J Mol Biol. 1971 Dec 28;62(3):625–627. doi: 10.1016/0022-2836(71)90161-6. [DOI] [PubMed] [Google Scholar]
  2. Arumugham R. G., Hildreth S. W., Paradiso P. R. Evidence that the fusion protein of respiratory syncytial virus exists as a dimer in its native form. Brief report. Arch Virol. 1989;106(3-4):327–334. doi: 10.1007/BF01313961. [DOI] [PubMed] [Google Scholar]
  3. Barlow D. J., Thornton J. M. Ion-pairs in proteins. J Mol Biol. 1983 Aug 25;168(4):867–885. doi: 10.1016/s0022-2836(83)80079-5. [DOI] [PubMed] [Google Scholar]
  4. Bratt M. A., Gallaher W. R. Preliminary analysis of the requirements for fusion from within and fusion from without by Newcastle disease virus. Proc Natl Acad Sci U S A. 1969 Oct;64(2):536–543. doi: 10.1073/pnas.64.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buckland R., Wild F. Leucine zipper motif extends. Nature. 1989 Apr 13;338(6216):547–547. doi: 10.1038/338547a0. [DOI] [PubMed] [Google Scholar]
  6. Chambers P., Pringle C. R., Easton A. J. Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J Gen Virol. 1990 Dec;71(Pt 12):3075–3080. doi: 10.1099/0022-1317-71-12-3075. [DOI] [PubMed] [Google Scholar]
  7. Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
  8. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  9. Collins P. L., Mottet G. Post-translational processing and oligomerization of the fusion glycoprotein of human respiratory syncytial virus. J Gen Virol. 1991 Dec;72(Pt 12):3095–3101. doi: 10.1099/0022-1317-72-12-3095. [DOI] [PubMed] [Google Scholar]
  10. Collins P. L., Wertz G. W., Ball L. A., Hightower L. E. Coding assignments of the five smaller mRNAs of Newcastle disease virus. J Virol. 1982 Sep;43(3):1024–1031. doi: 10.1128/jvi.43.3.1024-1031.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Copeland C. S., Doms R. W., Bolzau E. M., Webster R. G., Helenius A. Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J Cell Biol. 1986 Oct;103(4):1179–1191. doi: 10.1083/jcb.103.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  14. Gething M. J., McCammon K., Sambrook J. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell. 1986 Sep 12;46(6):939–950. doi: 10.1016/0092-8674(86)90076-0. [DOI] [PubMed] [Google Scholar]
  15. Gorman J. J., Nestorowicz A., Mitchell S. J., Corino G. L., Selleck P. W. Characterization of the sites of proteolytic activation of Newcastle disease virus membrane glycoprotein precursors. J Biol Chem. 1988 Sep 5;263(25):12522–12531. [PubMed] [Google Scholar]
  16. Hughes S. H., Greenhouse J. J., Petropoulos C. J., Sutrave P. Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J Virol. 1987 Oct;61(10):3004–3012. doi: 10.1128/jvi.61.10.3004-3012.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hughes S., Kosik E. Mutagenesis of the region between env and src of the SR-A strain of Rous sarcoma virus for the purpose of constructing helper-independent vectors. Virology. 1984 Jul 15;136(1):89–99. doi: 10.1016/0042-6822(84)90250-2. [DOI] [PubMed] [Google Scholar]
  18. Jameson B. A., Wolf H. The antigenic index: a novel algorithm for predicting antigenic determinants. Comput Appl Biosci. 1988 Mar;4(1):181–186. doi: 10.1093/bioinformatics/4.1.181. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Landschulz W. H., Johnson P. F., McKnight S. L. The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science. 1989 Mar 31;243(4899):1681–1688. doi: 10.1126/science.2494700. [DOI] [PubMed] [Google Scholar]
  21. Marqusee S., Baldwin R. L. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8898–8902. doi: 10.1073/pnas.84.24.8898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsumura H., Futaesaku Y., Kohno S., Sugiura A., Kohase M. A temperature-sensitive mutant of Newcastle disease virus defective in intracellular processing of fusion protein. J Virol. 1990 Mar;64(3):1410–1413. doi: 10.1128/jvi.64.3.1410-1413.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McGinnes L. W., Morrison T. G. Nucleotide sequence of the gene encoding the Newcastle disease virus fusion protein and comparisons of paramyxovirus fusion protein sequences. Virus Res. 1986 Sep;5(4):343–356. doi: 10.1016/0168-1702(86)90028-6. [DOI] [PubMed] [Google Scholar]
  24. McGinnes L. W., Morrison T. G. The nucleotide sequence of the gene encoding the Newcastle disease virus membrane protein and comparisons of membrane protein sequences. Virology. 1987 Feb;156(2):221–228. doi: 10.1016/0042-6822(87)90401-6. [DOI] [PubMed] [Google Scholar]
  25. McGrath J. P., Capon D. J., Goeddel D. V., Levinson A. D. Comparative biochemical properties of normal and activated human ras p21 protein. Nature. 1984 Aug 23;310(5979):644–649. doi: 10.1038/310644a0. [DOI] [PubMed] [Google Scholar]
  26. Morrison T. G., Peeples M. E., McGinnes L. W. Conformational change in a viral glycoprotein during maturation due to disulfide bond disruption. Proc Natl Acad Sci U S A. 1987 Feb;84(4):1020–1024. doi: 10.1073/pnas.84.4.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morrison T., McQuain C., McGinnes L. Complementation between avirulent Newcastle disease virus and a fusion protein gene expressed from a retrovirus vector: requirements for membrane fusion. J Virol. 1991 Feb;65(2):813–822. doi: 10.1128/jvi.65.2.813-822.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Morrison T., Ward L. J., Semerjian A. Intracellular processing of the Newcastle disease virus fusion glycoprotein. J Virol. 1985 Mar;53(3):851–857. doi: 10.1128/jvi.53.3.851-857.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nagai Y., Klenk H. D., Rott R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology. 1976 Jul 15;72(2):494–508. doi: 10.1016/0042-6822(76)90178-1. [DOI] [PubMed] [Google Scholar]
  30. Neyt C., Geliebter J., Slaoui M., Morales D., Meulemans G., Burny A. Mutations located on both F1 and F2 subunits of the Newcastle disease virus fusion protein confer resistance to neutralization with monoclonal antibodies. J Virol. 1989 Feb;63(2):952–954. doi: 10.1128/jvi.63.2.952-954.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. O'Shea E. K., Rutkowski R., Kim P. S. Evidence that the leucine zipper is a coiled coil. Science. 1989 Jan 27;243(4890):538–542. doi: 10.1126/science.2911757. [DOI] [PubMed] [Google Scholar]
  32. Peeples M. E., Bratt M. A. Mutation in the matrix protein of Newcastle disease virus can result in decreased fusion glycoprotein incorporation into particles and decreased infectivity. J Virol. 1984 Jul;51(1):81–90. doi: 10.1128/jvi.51.1.81-90.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Peeples M. E., Bratt M. A. Virion functions of RNA+ temperature-sensitive mutants of Newcastle disease virus. J Virol. 1982 May;42(2):440–446. doi: 10.1128/jvi.42.2.440-446.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Piszkiewicz D., Landon M., Smith E. L. Anomalous cleavage of aspartyl-proline peptide bonds during amino acid sequence determinations. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1173–1178. doi: 10.1016/0006-291x(70)90918-6. [DOI] [PubMed] [Google Scholar]
  35. Pritzer E., Kuroda K., Garten W., Nagai Y., Klenk H. D. A host range mutant of Newcastle disease virus with an altered cleavage site for proteolytic activation of the F protein. Virus Res. 1990 Mar;15(3):237–242. doi: 10.1016/0168-1702(90)90031-6. [DOI] [PubMed] [Google Scholar]
  36. Sechoy O., Philippot J. R., Bienvenue A. F protein-F protein interaction within the Sendai virus identified by native bonding or chemical cross-linking. J Biol Chem. 1987 Aug 25;262(24):11519–11523. [PubMed] [Google Scholar]
  37. Stampfer M., Baltimore D., Huang A. S. Ribonucleic acid synthesis of vesicular stomatitis virus. I. Species of ribonucleic acid found in Chinese hamster ovary cells infected with plaque-forming and defective particles. J Virol. 1969 Aug;4(2):154–161. doi: 10.1128/jvi.4.2.154-161.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sundaralingam M., Sekharudu Y. C., Yathindra N., Ravichandran V. Ion pairs in alpha helices. Proteins. 1987;2(1):64–71. doi: 10.1002/prot.340020108. [DOI] [PubMed] [Google Scholar]
  39. Toyoda T., Gotoh B., Sakaguchi T., Kida H., Nagai Y. Identification of amino acids relevant to three antigenic determinants on the fusion protein of Newcastle disease virus that are involved in fusion inhibition and neutralization. J Virol. 1988 Nov;62(11):4427–4430. doi: 10.1128/jvi.62.11.4427-4430.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Toyoda T., Sakaguchi T., Hirota H., Gotoh B., Kuma K., Miyata T., Nagai Y. Newcastle disease virus evolution. II. Lack of gene recombination in generating virulent and avirulent strains. Virology. 1989 Apr;169(2):273–282. doi: 10.1016/0042-6822(89)90152-9. [DOI] [PubMed] [Google Scholar]
  41. Tsipis J. E., Bratt M. A. Isolation and preliminary characterization of temperature-sensitive mutants of Newcastle disease virus. J Virol. 1976 Jun;18(3):848–855. doi: 10.1128/jvi.18.3.848-855.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wilson I. A., Skehel J. J., Wiley D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature. 1981 Jan 29;289(5796):366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  43. Yusoff K., Nesbit M., McCartney H., Meulemans G., Alexander D. J., Collins M. S., Emmerson P. T., Samson A. C. Location of neutralizing epitopes on the fusion protein of Newcastle disease virus strain Beaudette C. J Gen Virol. 1989 Nov;70(Pt 11):3105–3109. doi: 10.1099/0022-1317-70-11-3105. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES