Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1992 Jul;66(7):4233–4241. doi: 10.1128/jvi.66.7.4233-4241.1992

Association of the nonstructural protein NSs of Uukuniemi virus with the 40S ribosomal subunit.

J F Simons 1, R Persson 1, R F Pettersson 1
PMCID: PMC241227  PMID: 1534850

Abstract

The small RNA segment (S segment) of Uukuniemi (UUK) virus encodes two proteins, the nucleocapsid protein (N) and a nonstructural protein (NSs), by an ambisense strategy. The function of NSs has not been elucidated for any of the bunyaviruses expressing this protein. We have now expressed the N and NSs proteins in Sf9 insect cells by using the baculovirus expression system. High yields of both proteins were obtained. A monospecific antibody was raised against gel-purified NSs and used to study the synthesis and localization of the protein in UUK virus-infected BHK21 cells. While the N protein was detected as early as 4 h postinfection (p.i.), NSs was identified only after 8 h p.i. Both proteins were still synthesized at high levels at 24 h p.i. The half-life of NSs was about 1.5 h, while that of the N protein was several hours. Sucrose gradient fractionation of [35S]methionine-labeled detergent-solubilized extracts of infected BHK21 cells indicated that NSs was firmly associated with the 40S ribosomal subunit. This association took place shortly after translation and was partially resistant to 1 M NaCl. NSs expressed by using the T7 vaccinia virus expression system, as well as in vitro-translated NSs, was also associated with the 40S subunit. In contrast, in vitro-translated N protein was found on top of the gradient. Immunolocalization of NSs, in UUK virus-infected cells, by using an affinity-purified antibody showed a granular cytoplasmic staining. A very similar pattern was seen for cells expressing NSs from a cDNA copy by using a vaccinia virus expression system. No staining was observed in the nuclei in either case. Furthermore, NSs was found neither in virions nor in nucleocapsids isolated from infected cells. In vivo labeling with 32Pi indicated that NSs is not phosphorylated. The possible function of NSs is discussed in light of these results.

Full text

PDF
4233

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi H., Bishop D. H. Comparison of the sequences and coding of La Crosse and snowshoe hare bunyavirus S RNA species. J Virol. 1983 Mar;45(3):1155–1158. doi: 10.1128/jvi.45.3.1155-1158.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Elliott R. M. Identification of nonstructural proteins encoded by viruses of the Bunyamwera serogroup (family Bunyaviridae). Virology. 1985 May;143(1):119–126. doi: 10.1016/0042-6822(85)90101-1. [DOI] [PubMed] [Google Scholar]
  3. Elliott R. M. Molecular biology of the Bunyaviridae. J Gen Virol. 1990 Mar;71(Pt 3):501–522. doi: 10.1099/0022-1317-71-3-501. [DOI] [PubMed] [Google Scholar]
  4. Fuerst T. R., Niles E. G., Studier F. W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fuller F., Bishop D. H. Identification of virus-coded nonstructural polypeptides in bunyavirus-infected cells. J Virol. 1982 Feb;41(2):643–648. doi: 10.1128/jvi.41.2.643-648.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gahmberg N. Characterization of two recombination-complementation groups of Uukuniemi virus temperature-sensitive mutants. J Gen Virol. 1984 Jun;65(Pt 6):1079–1090. doi: 10.1099/0022-1317-65-6-1079. [DOI] [PubMed] [Google Scholar]
  7. Giorgi C., Accardi L., Nicoletti L., Gro M. C., Takehara K., Hilditch C., Morikawa S., Bishop D. H. Sequences and coding strategies of the S RNAs of Toscana and Rift Valley fever viruses compared to those of Punta Toro, Sicilian Sandfly fever, and Uukuniemi viruses. Virology. 1991 Feb;180(2):738–753. doi: 10.1016/0042-6822(91)90087-r. [DOI] [PubMed] [Google Scholar]
  8. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  9. Ihara T., Akashi H., Bishop D. H. Novel coding strategy (ambisense genomic RNA) revealed by sequence analyses of Punta Toro Phlebovirus S RNA. Virology. 1984 Jul 30;136(2):293–306. doi: 10.1016/0042-6822(84)90166-1. [DOI] [PubMed] [Google Scholar]
  10. Ihara T., Smith J., Dalrymple J. M., Bishop D. H. Complete sequences of the glycoproteins and M RNA of Punta Toro phlebovirus compared to those of Rift Valley fever virus. Virology. 1985 Jul 15;144(1):246–259. doi: 10.1016/0042-6822(85)90321-6. [DOI] [PubMed] [Google Scholar]
  11. Jackson R. J., Hunt T. Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol. 1983;96:50–74. doi: 10.1016/s0076-6879(83)96008-1. [DOI] [PubMed] [Google Scholar]
  12. Kormelink R., Kitajima E. W., De Haan P., Zuidema D., Peters D., Goldbach R. The nonstructural protein (NSs) encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology. 1991 Apr;181(2):459–468. doi: 10.1016/0042-6822(91)90878-f. [DOI] [PubMed] [Google Scholar]
  13. Kuismanen E., Bång B., Hurme M., Pettersson R. F. Uukuniemi virus maturation: immunofluorescence microscopy with monoclonal glycoprotein-specific antibodies. J Virol. 1984 Jul;51(1):137–146. doi: 10.1128/jvi.51.1.137-146.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuismanen E., Hedman K., Saraste J., Pettersson R. F. Uukuniemi virus maturation: accumulation of virus particles and viral antigens in the Golgi complex. Mol Cell Biol. 1982 Nov;2(11):1444–1458. doi: 10.1128/mcb.2.11.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Luckow V. A., Summers M. D. High level expression of nonfused foreign genes with Autographa californica nuclear polyhedrosis virus expression vectors. Virology. 1989 May;170(1):31–39. doi: 10.1016/0042-6822(89)90348-6. [DOI] [PubMed] [Google Scholar]
  16. Marriott A. C., Ward V. K., Nuttall P. A. The S RNA segment of Sandfly Fever Sicilian virus: evidence for an ambisense genome. Virology. 1989 Apr;169(2):341–345. doi: 10.1016/0042-6822(89)90159-1. [DOI] [PubMed] [Google Scholar]
  17. Matsuura Y., Possee R. D., Overton H. A., Bishop D. H. Baculovirus expression vectors: the requirements for high level expression of proteins, including glycoproteins. J Gen Virol. 1987 May;68(Pt 5):1233–1250. doi: 10.1099/0022-1317-68-5-1233. [DOI] [PubMed] [Google Scholar]
  18. Overton H. A., Ihara T., Bishop D. H. Identification of the N and NSS proteins coded by the ambisense S RNA of Punta Toro phlebovirus using monospecific antisera raised to baculovirus expressed N and NSS proteins. Virology. 1987 Apr;157(2):338–350. doi: 10.1016/0042-6822(87)90276-5. [DOI] [PubMed] [Google Scholar]
  19. Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  20. Pettersson R., Käriäinen L. The ribonucleic acids of Uukuniemi virus, a noncubical tick-borne arbovirus. Virology. 1973 Dec;56(2):608–619. doi: 10.1016/0042-6822(73)90062-7. [DOI] [PubMed] [Google Scholar]
  21. Pringle C. R. The Bunyaviridae and their genetics--an overview. Curr Top Microbiol Immunol. 1991;169:1–25. [PubMed] [Google Scholar]
  22. Ranki M., Ulmanen I., Käriäinen L. Semliki Forest virus-specific nonstructural protein is associated with ribosomes. FEBS Lett. 1979 Dec 1;108(1):299–302. doi: 10.1016/0014-5793(79)81232-6. [DOI] [PubMed] [Google Scholar]
  23. Rönnholm R., Pettersson R. F. Complete nucleotide sequence of the M RNA segment of Uukuniemi virus encoding the membrane glycoproteins G1 and G2. Virology. 1987 Sep;160(1):191–202. doi: 10.1016/0042-6822(87)90060-2. [DOI] [PubMed] [Google Scholar]
  24. Simons J. F., Hellman U., Pettersson R. F. Uukuniemi virus S RNA segment: ambisense coding strategy, packaging of complementary strands into virions, and homology to members of the genus Phlebovirus. J Virol. 1990 Jan;64(1):247–255. doi: 10.1128/jvi.64.1.247-255.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith J. F., Pifat D. Y. Morphogenesis of sandfly viruses (Bunyaviridae family). Virology. 1982 Aug;121(1):61–81. doi: 10.1016/0042-6822(82)90118-0. [DOI] [PubMed] [Google Scholar]
  26. Struthers J. K., Swanepoel R. Identification of a major non-structural protein in the nuclei of Rift Valley fever virus-infected cells. J Gen Virol. 1982 Jun;60(Pt 2):381–384. doi: 10.1099/0022-1317-60-2-381. [DOI] [PubMed] [Google Scholar]
  27. Struthers J. K., Swanepoel R., Shepherd S. P. Protein synthesis in Rift Valley fever virus-infected cells. Virology. 1984 Apr 15;134(1):118–124. doi: 10.1016/0042-6822(84)90277-0. [DOI] [PubMed] [Google Scholar]
  28. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ulmanen I., Seppälä P., Pettersson R. F. In vitro translation of Uukuniemi virus-specific RNAs: identification of a nonstructural protein and a precursor to the membrane glycoproteins. J Virol. 1981 Jan;37(1):72–79. doi: 10.1128/jvi.37.1.72-79.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ulmanen I., Söderlund H., Käriäinen L. Semliki Forest virus capsid protein associates with the 60S ribosomal subunit in infected cells. J Virol. 1976 Oct;20(1):203–210. doi: 10.1128/jvi.20.1.203-210.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES