Abstract
Current efforts to develop an Epstein-Barr virus subunit vaccine are based on the major envelope glycoprotein gp340. Given the central role of CD4+ T cells in regulating immune responses to subunit vaccine antigens, the present study has begun the work of identifying linear epitopes which are recognized by human CD4+ T cells within the 907-amino-acid sequence of gp340. A panel of gp340-specific CD4+ T-cell clones from an Epstein-Barr virus-immune donor were first assayed for their proliferative responses to a series of truncated gp340 molecules expressed from recombinant DNA vectors in rat GH3 cells, by using an autologous B lymphoblastoid cell line as a source of antigen-presenting cells. The first four T-cell clones analyzed all responded to a truncated form of gp340 which contained only the first 260 N-terminal amino acids. These clones were subsequently screened for responses to each of a panel of overlapping synthetic peptides (15-mers) corresponding to the primary amino acid sequence of the first 260 N-terminal amino acids of gp340. One clone (CG2.7) responded specifically to peptides from the region spanning amino acids 61 to 81, while three other clones (CG5.15, CG5.24, and CG5.36) responded specifically to peptides from the region spanning amino acids 163 to 183. Work with individual peptides from these regions allowed finer mapping of the T-cell epitopes and also revealed the highly dose-dependent nature of peptide-induced responses, with inhibitory effects apparent when the most antigenic peptides were present at supraoptimal concentrations. Experiments using homozygous typing B lymphoblastoid cell lines as antigen-presenting cells showed that the T-cell clones with different epitope specificities were restricted through different HLA class II antigens; clone CG2.7 recognized epitope 61-81 in the context of HLA DRw15, whereas clones CG5.15, CG5.24, and CG5.36 recognized epitope 163-183 in the context of HLA DRw11. The present protocol therefore makes a systematic analysis of CD4+ T-cell epitopes within gp340 possible; it will be necessary to screen gp340-specific T-cell clones from a variety of donors to assess the wider influence of HLA class II polymorphism upon epitope choice.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babbitt B. P., Allen P. M., Matsueda G., Haber E., Unanue E. R. Binding of immunogenic peptides to Ia histocompatibility molecules. 1985 Sep 26-Oct 2Nature. 317(6035):359–361. doi: 10.1038/317359a0. [DOI] [PubMed] [Google Scholar]
- Beisel C., Tanner J., Matsuo T., Thorley-Lawson D., Kezdy F., Kieff E. Two major outer envelope glycoproteins of Epstein-Barr virus are encoded by the same gene. J Virol. 1985 Jun;54(3):665–674. doi: 10.1128/jvi.54.3.665-674.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berzofsky J. A., Bensussan A., Cease K. B., Bourge J. F., Cheynier R., Lurhuma Z., Salaün J. J., Gallo R. C., Shearer G. M., Zagury D. Antigenic peptides recognized by T lymphocytes from AIDS viral envelope-immune humans. Nature. 1988 Aug 25;334(6184):706–708. doi: 10.1038/334706a0. [DOI] [PubMed] [Google Scholar]
- Biggin M., Farrell P. J., Barrell B. G. Transcription and DNA sequence of the BamHI L fragment of B95-8 Epstein-Barr virus. EMBO J. 1984 May;3(5):1083–1090. doi: 10.1002/j.1460-2075.1984.tb01933.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature. 1987 Oct 8;329(6139):512–518. doi: 10.1038/329512a0. [DOI] [PubMed] [Google Scholar]
- Cleary M. L., Epstein M. A., Finerty S., Dorfman R. F., Bornkamm G. W., Kirkwood J. K., Morgan A. J., Sklar J. Individual tumors of multifocal EB virus-induced malignant lymphomas in tamarins arise from different B-cell clones. Science. 1985 May 10;228(4700):722–724. doi: 10.1126/science.2986287. [DOI] [PubMed] [Google Scholar]
- David E. M., Morgan A. J. Efficient purification of Epstein-Barr virus membrane antigen gp340 by fast protein liquid chromatography. J Immunol Methods. 1988 Apr 6;108(1-2):231–236. doi: 10.1016/0022-1759(88)90424-3. [DOI] [PubMed] [Google Scholar]
- DeLisi C., Berzofsky J. A. T-cell antigenic sites tend to be amphipathic structures. Proc Natl Acad Sci U S A. 1985 Oct;82(20):7048–7052. doi: 10.1073/pnas.82.20.7048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolyniuk M., Wolff E., Kieff E. Proteins of Epstein-Barr Virus. II. Electrophoretic analysis of the polypeptides of the nucleocapsid and the glucosamine- and polysaccharide-containing components of enveloped virus. J Virol. 1976 Apr;18(1):289–297. doi: 10.1128/jvi.18.1.289-297.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doumas B. T. Standards for total serum protein assays--a collaborative study. Clin Chem. 1975 Jul;21(8):1159–1166. [PubMed] [Google Scholar]
- Emini E. A., Schleif W. A., Armstrong M. E., Silberklang M., Schultz L. D., Lehman D., Maigetter R. Z., Qualtiere L. F., Pearson G. R., Ellis R. W. Antigenic analysis of the Epstein-Barr virus major membrane antigen (gp350/220) expressed in yeast and mammalian cells: implications for the development of a subunit vaccine. Virology. 1988 Oct;166(2):387–393. doi: 10.1016/0042-6822(88)90509-0. [DOI] [PubMed] [Google Scholar]
- Emini E. A., Schleif W. A., Silberklang M., Lehman D., Ellis R. W. Vero cell-expressed Epstein-Barr virus (EBV) gp350/220 protects marmosets from EBV challenge. J Med Virol. 1989 Feb;27(2):120–123. doi: 10.1002/jmv.1890270210. [DOI] [PubMed] [Google Scholar]
- Epstein M. A. Epstein-Barr virus--is it time to develop a vaccine program? J Natl Cancer Inst. 1976 Apr;56(4):697–700. doi: 10.1093/jnci/56.4.697. [DOI] [PubMed] [Google Scholar]
- Epstein M. A., Randle B. J., Finerty S., Kirkwood J. K. Not all potently neutralizing, vaccine-induced antibodies to Epstein-Barr virus ensure protection of susceptible experimental animals. Clin Exp Immunol. 1986 Mar;63(3):485–490. [PMC free article] [PubMed] [Google Scholar]
- Francis M. J., Hastings G. Z., Syred A. D., McGinn B., Brown F., Rowlands D. J. Non-responsiveness to a foot-and-mouth disease virus peptide overcome by addition of foreign helper T-cell determinants. Nature. 1987 Nov 12;330(6144):168–170. doi: 10.1038/330168a0. [DOI] [PubMed] [Google Scholar]
- Good M. F., Berzofsky J. A., Miller L. H. The T cell response to the malaria circumsporozoite protein: an immunological approach to vaccine development. Annu Rev Immunol. 1988;6:663–688. doi: 10.1146/annurev.iy.06.040188.003311. [DOI] [PubMed] [Google Scholar]
- Gordon J., Ley S. C., Melamed M. D., English L. S., Hughes-Jones N. C. Immortalized B lymphocytes produce B-cell growth factor. Nature. 1984 Jul 12;310(5973):145–147. doi: 10.1038/310145a0. [DOI] [PubMed] [Google Scholar]
- Lamb J. R., Eckels D. D., Lake P., Woody J. N., Green N. Human T-cell clones recognize chemically synthesized peptides of influenza haemagglutinin. Nature. 1982 Nov 4;300(5887):66–69. doi: 10.1038/300066a0. [DOI] [PubMed] [Google Scholar]
- Lamb J. R., Skidmore B. J., Green N., Chiller J. M., Feldmann M. Induction of tolerance in influenza virus-immune T lymphocyte clones with synthetic peptides of influenza hemagglutinin. J Exp Med. 1983 May 1;157(5):1434–1447. doi: 10.1084/jem.157.5.1434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin J. C., Smith M. C., Pagano J. S. Prolonged inhibitory effect of 9-(1,3-dihydroxy-2-propoxymethyl)guanine against replication of Epstein-Barr virus. J Virol. 1984 Apr;50(1):50–55. doi: 10.1128/jvi.50.1.50-55.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magrath I. The pathogenesis of Burkitt's lymphoma. Adv Cancer Res. 1990;55:133–270. doi: 10.1016/s0065-230x(08)60470-4. [DOI] [PubMed] [Google Scholar]
- Marsh S. G., Bodmer J. G. HLA-DR and -DQ epitopes and monoclonal antibody specificity. Immunol Today. 1989 Sep;10(9):305–312. doi: 10.1016/0167-5699(89)90086-8. [DOI] [PubMed] [Google Scholar]
- Milich D. R., McLachlan A., Thornton G. B., Hughes J. L. Antibody production to the nucleocapsid and envelope of the hepatitis B virus primed by a single synthetic T cell site. Nature. 1987 Oct 8;329(6139):547–549. doi: 10.1038/329547a0. [DOI] [PubMed] [Google Scholar]
- Morgan A. J., Allison A. C., Finerty S., Scullion F. T., Byars N. E., Epstein M. A. Validation of a first-generation Epstein-Barr virus vaccine preparation suitable for human use. J Med Virol. 1989 Sep;29(1):74–78. doi: 10.1002/jmv.1890290114. [DOI] [PubMed] [Google Scholar]
- Morgan A. J., Finerty S., Lovgren K., Scullion F. T., Morein B. Prevention of Epstein-Barr (EB) virus-induced lymphoma in cottontop tamarins by vaccination with the EB virus envelope glycoprotein gp340 incorporated into immune-stimulating complexes. J Gen Virol. 1988 Aug;69(Pt 8):2093–2096. doi: 10.1099/0022-1317-69-8-2093. [DOI] [PubMed] [Google Scholar]
- Morrison L. A., Lukacher A. E., Braciale V. L., Fan D. P., Braciale T. J. Differences in antigen presentation to MHC class I-and class II-restricted influenza virus-specific cytolytic T lymphocyte clones. J Exp Med. 1986 Apr 1;163(4):903–921. doi: 10.1084/jem.163.4.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nemerow G. R., Mold C., Schwend V. K., Tollefson V., Cooper N. R. Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J Virol. 1987 May;61(5):1416–1420. doi: 10.1128/jvi.61.5.1416-1420.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panina-Bordignon P., Demotz S., Corradin G., Lanzavecchia A. Study on the immunogenicity of human class-II-restricted T-cell epitopes: processing constraints, degenerate binding, and promiscuous recognition. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):445–451. doi: 10.1101/sqb.1989.054.01.053. [DOI] [PubMed] [Google Scholar]
- Qualtiere L. F., Decoteau J. F., Hassan Nasr-el-Din M. Epitope mapping of the major Epstein-Barr virus outer envelope glycoprotein gp350/220. J Gen Virol. 1987 Feb;68(Pt 2):535–543. doi: 10.1099/0022-1317-68-2-535. [DOI] [PubMed] [Google Scholar]
- Rabin H., Hopkins R. F., 3rd, Ruscetti F. W., Neubauer R. H., Brown R. L., Kawakami T. G. Spontaneous release of a factor with properties of T cell growth factor from a continuous line of primate tumor T cells. J Immunol. 1981 Nov;127(5):1852–1856. [PubMed] [Google Scholar]
- Rothbard J. B., Taylor W. R. A sequence pattern common to T cell epitopes. EMBO J. 1988 Jan;7(1):93–100. doi: 10.1002/j.1460-2075.1988.tb02787.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz R. H. A cell culture model for T lymphocyte clonal anergy. Science. 1990 Jun 15;248(4961):1349–1356. doi: 10.1126/science.2113314. [DOI] [PubMed] [Google Scholar]
- Schwartz R. H. T-lymphocyte recognition of antigen in association with gene products of the major histocompatibility complex. Annu Rev Immunol. 1985;3:237–261. doi: 10.1146/annurev.iy.03.040185.001321. [DOI] [PubMed] [Google Scholar]
- Sinigaglia F., Guttinger M., Kilgus J., Doran D. M., Matile H., Etlinger H., Trzeciak A., Gillessen D., Pink J. R. A malaria T-cell epitope recognized in association with most mouse and human MHC class II molecules. Nature. 1988 Dec 22;336(6201):778–780. doi: 10.1038/336778a0. [DOI] [PubMed] [Google Scholar]
- Tanner J., Whang Y., Sample J., Sears A., Kieff E. Soluble gp350/220 and deletion mutant glycoproteins block Epstein-Barr virus adsorption to lymphocytes. J Virol. 1988 Dec;62(12):4452–4464. doi: 10.1128/jvi.62.12.4452-4464.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorley-Lawson D. A., Edson C. M., Geilinger K. Epstein-Barr virus antigens-a challenge to modern biochemistry. Adv Cancer Res. 1982;36:295–348. doi: 10.1016/s0065-230x(08)60428-5. [DOI] [PubMed] [Google Scholar]
- Thorley-Lawson D. A., Poodry C. A. Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo. J Virol. 1982 Aug;43(2):730–736. doi: 10.1128/jvi.43.2.730-736.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Townsend A., Bodmer H. Antigen recognition by class I-restricted T lymphocytes. Annu Rev Immunol. 1989;7:601–624. doi: 10.1146/annurev.iy.07.040189.003125. [DOI] [PubMed] [Google Scholar]
- Ulaeto D., Wallace L., Morgan A., Morein B., Rickinson A. B. In vitro T cell responses to a candidate Epstein-Barr virus vaccine: human CD4+ T cell clones specific for the major envelope glycoprotein gp340. Eur J Immunol. 1988 Nov;18(11):1689–1697. doi: 10.1002/eji.1830181106. [DOI] [PubMed] [Google Scholar]
- Wakasugi H., Rimsky L., Mahe Y., Kamel A. M., Fradelizi D., Tursz T., Bertoglio J. Epstein-Barr virus-containing B-cell line produces an interleukin 1 that it uses as a growth factor. Proc Natl Acad Sci U S A. 1987 Feb;84(3):804–808. doi: 10.1073/pnas.84.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watkins D. I., Hodi F. S., Letvin N. L. A primate species with limited major histocompatibility complex class I polymorphism. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7714–7718. doi: 10.1073/pnas.85.20.7714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whang Y., Silberklang M., Morgan A., Munshi S., Lenny A. B., Ellis R. W., Kieff E. Expression of the Epstein-Barr virus gp350/220 gene in rodent and primate cells. J Virol. 1987 Jun;61(6):1796–1807. doi: 10.1128/jvi.61.6.1796-1807.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young L. S., Finerty S., Brooks L., Scullion F., Rickinson A. B., Morgan A. J. Epstein-Barr virus gene expression in malignant lymphomas induced by experimental virus infection of cottontop tamarins. J Virol. 1989 May;63(5):1967–1974. doi: 10.1128/jvi.63.5.1967-1974.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Y. Seroepidemiological studies on nasopharyngeal carcinoma in China. Adv Cancer Res. 1985;44:121–138. doi: 10.1016/s0065-230x(08)60027-5. [DOI] [PubMed] [Google Scholar]