Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1984 Aug;48(2):294–300. doi: 10.1128/aem.48.2.294-300.1984

Effects of a fluoro substituent on the fungal metabolism of 1-fluoronaphthalene.

C E Cerniglia, D W Miller, S K Yang, J P Freeman
PMCID: PMC241506  PMID: 6486779

Abstract

The metabolism of 1-fluoronaphthalene by Cunninghamella elegans ATCC 36112 was studied. The metabolites were isolated by reverse-phase high-pressure liquid chromatography and characterized by the application of UV absorption, 1H nuclear magnetic resonance, and mass spectral techniques. C. elegans oxidized 1-fluoronaphthalene predominantly at the 3,4- and 5,6-positions to form trans-3,4-dihydroxy-3,4-dihydro-1-fluoronaphthalene and trans-5,6-dihydroxy-5,6-dihydro-1-fluoronaphthalene. In addition, 1-fluoro-8-hydroxy-5-tetralone, 5-hydroxy-1-fluoronaphthalene, and 4-hydroxy-1-fluoronaphthalene as well as glucoside, sulfate, and glucuronic acid conjugates of these phenols were formed. Circular dichroism spectra of the trans-3,4- and trans-5,6-dihydrodiols formed from 1-fluoronaphthalene indicated that the major enantiomers of the dihydrodiols have S,S absolute stereochemistries. In contrast, the trans-5,6-dihydrodiol formed from 1-fluoronaphthalene from 3-methylcholanthrene-treated rats had Cotton effects that are opposite in sign (R,R) to those formed by C. elegans. The results indicate that the fungal monooxygenase-epoxide hydrolase systems are highly stereoselective in the metabolism of 1-fluoronaphthalene and that a fluoro substituent blocks epoxidation at the fluoro-substituted double bond, decreases oxidation at the aromatic double bond that is peri to the fluoro substituent, and enhances metabolism at the 3,4- and 5,6-positions of 1-fluoronaphthalene.

Full text

PDF
294

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyd D. R., Daly J. W., Jerina D. M. Rearrangement of (1- 2 H)- and (2- 2 H)naphthalene 1,2-oxides to 1-naphthol. Mechanism of the NIH shift. Biochemistry. 1972 May 9;11(10):1961–1966. doi: 10.1021/bi00760a035. [DOI] [PubMed] [Google Scholar]
  2. Boylan D. B., Tripp B. W. Determination of hydrocarbons in seawater extracts of crude oil and crude oil fractions. Nature. 1971 Mar 5;230(5288):44–47. doi: 10.1038/230044a0. [DOI] [PubMed] [Google Scholar]
  3. Cerniglia C. E., Althaus J. R., Evans F. E., Freeman J. P., Mitchum R. K., Yang S. K. Stereochemistry and evidence for an arene oxide-NIH shift pathway in the fungal metabolism of naphthalene. Chem Biol Interact. 1983 Apr-May;44(1-2):119–132. doi: 10.1016/0009-2797(83)90134-5. [DOI] [PubMed] [Google Scholar]
  4. Cerniglia C. E., Freeman J. P., Mitchum R. K. Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons. Appl Environ Microbiol. 1982 May;43(5):1070–1075. doi: 10.1128/aem.43.5.1070-1075.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cerniglia C. E., Gibson D. T. Metabolism of naphthalene by Cunninghamella elegans. Appl Environ Microbiol. 1977 Oct;34(4):363–370. doi: 10.1128/aem.34.4.363-370.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cerniglia C. E., Gibson D. T. Metabolism of naphthalene by cell extracts of Cunninghamella elegans. Arch Biochem Biophys. 1978 Feb;186(1):121–127. doi: 10.1016/0003-9861(78)90471-x. [DOI] [PubMed] [Google Scholar]
  7. Cerniglia C. E., Hebert R. L., Szaniszlo P. J., Gibson D. T. Fungal transformation of naphthalene. Arch Microbiol. 1978 May 30;117(2):135–143. doi: 10.1007/BF00402301. [DOI] [PubMed] [Google Scholar]
  8. Chou M. W., Yang S. K. Combined reversed-phase and normal-phase high-performance liquid chromatography in the purification and identification of 7,12-dimethylbenz[a]anthracene metabolites. J Chromatogr. 1979 Dec 20;185:635–654. doi: 10.1016/s0021-9673(00)85637-x. [DOI] [PubMed] [Google Scholar]
  9. Ferris J. P., Fasco M. J., Stylianopoulou F. L., Jerina D. M., Daly J. W., Jeffrey A. M. Monooxygenase activity in Cunninghamella bainieri: evidence for a fungal system similar to liver microsomes. Arch Biochem Biophys. 1973 May;156(1):97–103. doi: 10.1016/0003-9861(73)90345-7. [DOI] [PubMed] [Google Scholar]
  10. Jerina D. M., Daly J. W., Witkop B., Zaltzman-Nirenberg P., Udenfriend S. 1,2-naphthalene oxide as an intermediate in the microsomal hydroxylation of naphthalene. Biochemistry. 1970 Jan 6;9(1):147–156. doi: 10.1021/bi00803a019. [DOI] [PubMed] [Google Scholar]
  11. Jerina D. M., Daly J. W., Witkop B., Zaltzman-Nirenberg P., Udenfriend S. The role of arene oxide-oxepin systems in the metabolism of aromatic substrates. 3. Formation of 1,2-naphthalene oxide from naphthalene by liver microsomes. J Am Chem Soc. 1968 Nov 6;90(23):6525–6527. doi: 10.1021/ja01025a058. [DOI] [PubMed] [Google Scholar]
  12. Lee C. C., Craig W. K., Smith P. J. Water-soluble hydrocarbons from crude oil. Bull Environ Contam Toxicol. 1974 Aug;12(2):212–217. doi: 10.1007/BF01684964. [DOI] [PubMed] [Google Scholar]
  13. Smith R. V., Rosazza J. P. Microbial models of mammalian metabolism. Aromatic hydroxylation. Arch Biochem Biophys. 1974 Apr 2;161(2):551–558. doi: 10.1016/0003-9861(74)90338-5. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES