Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1984 Aug;48(2):311–316. doi: 10.1128/aem.48.2.311-316.1984

Characterization of a halo-acid-tolerant variant of Clostridium botulinum B-aphis.

T J Montville
PMCID: PMC241509  PMID: 6385847

Abstract

Clostridium botulinum B-aphis spores plated on medium containing 4% salt at pH 6.0 yielded colonies at a frequency of ca. 1 in 10(6). A subculture of one of these colonies, designated strain Ba410, was compared with the parent strain, B-aphis, for a variety of traits. After 7 days of incubation at 37 degrees C, strain Ba410 grew in medium containing 7% NaCl, whereas strain B-aphis could not grow in salt concentrations greater than 5%. The strains also differed in cellular and colonial morphology. After exponential growth in the basal medium was completed, lysis of both strains was pH dependent; in media containing salt, lysis of Ba410 cells was pH independent. Strain Ba410 was more proteolytic than strain B-aphis in conditions of low pH and high salt, so that its toxin could be detected by the mouse assay. In a medium containing alanine and cysteine, the germination rate of B-aphis was 0.77% min-1, whereas that of Ba410 was 0.14% min-1; 2% salt inhibited the germination of Ba410 but not B-aphis.

Full text

PDF
311

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BONVENTRE P. F., KEMPE L. L. Physiology of toxin production by Clostridium botulinum types A and B. II. Effect of carbohydrate source on growth, autolysis, and toxin production. Appl Microbiol. 1959 Nov;7:372–374. doi: 10.1128/am.7.6.372-374.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BONVENTRE P. F., KEMPE L. L. Physiology of toxin production by Clostridium botulinum types A and B. III. Effect of pH and temperature during incubation on growth, autolysis. and toxin production. Appl Microbiol. 1959 Nov;7:374–377. doi: 10.1128/am.7.6.374-377.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BONVENTRE P. F., KEMPE L. L. Physiology of toxin production by Clostridium botulinum types A and B. IV. Activation of the toxin. J Bacteriol. 1960 Jan;79:24–32. doi: 10.1128/jb.79.1.24-32.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dasgupta B. R., Sugiyama H. Isolation and characterization of a protease from Clostridium botulinum type B. Biochim Biophys Acta. 1972 Jun 16;268(3):719–729. doi: 10.1016/0005-2744(72)90276-8. [DOI] [PubMed] [Google Scholar]
  5. Duncan C. L., Foster E. M. Effect of sodium nitrite, sodium chloride , and sodium nitrate on germination and outgrowth of anaerobic spores. Appl Microbiol. 1968 Feb;16(2):406–411. doi: 10.1128/am.16.2.406-411.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elberg S. S., Meyer K. F. The Extracellular Proteolytic System of Clostridium parabotulinum. J Bacteriol. 1939 May;37(5):541–565. doi: 10.1128/jb.37.5.541-565.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Foegeding P. M., Busta F. F. Differing L-alanine germination requirements of hypochlorite-treated Clostridium botulinum spores from two crops. Appl Environ Microbiol. 1983 Apr;45(4):1415–1417. doi: 10.1128/aem.45.4.1415-1417.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foegeding P. M., Busta F. F. Hypochlorite injury of Clostridium botulinum spores alters germination responses. Appl Environ Microbiol. 1983 Apr;45(4):1360–1368. doi: 10.1128/aem.45.4.1360-1368.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foegeding P. M., Busta F. F. Proposed role of lactate in germination of hypochlorite-treated Clostridium botulinum spores. Appl Environ Microbiol. 1983 Apr;45(4):1369–1373. doi: 10.1128/aem.45.4.1369-1373.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grondalen T. Osteochondrosis and arthrosis in pigs. I. Incidence in animals up to 120 kg live weight. Acta Vet Scand. 1974;15(1):1–25. doi: 10.1186/BF03547490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kawata T., Takumi K. Autolytic enzyme system of Clostridium botulinum. I. Partial purification and characterization of an autolysin of Clostridium botulinum type A. Jpn J Microbiol. 1971 Jan;15(1):1–10. [PubMed] [Google Scholar]
  12. Lamanna C., Sakaguchi G. Botulinal toxins and the problem of nomenclature of simple toxins. Bacteriol Rev. 1971 Sep;35(3):242–249. doi: 10.1128/br.35.3.242-249.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Montville T. J. Dependence of Clostridium botulinum gas and protease production on culture conditions. Appl Environ Microbiol. 1983 Feb;45(2):571–575. doi: 10.1128/aem.45.2.571-575.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Montville T. J. Dual-substrate plate diffusion assay for proteases. Appl Environ Microbiol. 1983 Jan;45(1):200–204. doi: 10.1128/aem.45.1.200-204.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Montville T. J. Effect of plating medium on heat activation requirement of Clostridium botulinum spores. Appl Environ Microbiol. 1981 Oct;42(4):734–736. doi: 10.1128/aem.42.4.734-736.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Montville T. J. Interaction of pH and NaCl on culture density of Clostridium botulinum 62A. Appl Environ Microbiol. 1983 Oct;46(4):961–963. doi: 10.1128/aem.46.4.961-963.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Montville T. J. Quantitation of pH- and salt-tolerant subpopulations from Clostridium botulinum. Appl Environ Microbiol. 1984 Jan;47(1):28–30. doi: 10.1128/aem.47.1.28-30.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rowley D. B., Feeherry F. Conditions Affecting Germination of Clostridium botulinum 62A Spores in a Chemically Defined Medium. J Bacteriol. 1970 Dec;104(3):1151–1157. doi: 10.1128/jb.104.3.1151-1157.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Takumi K., Kawata T., Hisatsune K. Autolytic enzyme system of Clostridium botulinum. II. Mode of action of autolytic enzymes in Clostridium botulinum type A. Jpn J Microbiol. 1971 Mar;15(2):131–141. doi: 10.1111/j.1348-0421.1971.tb00562.x. [DOI] [PubMed] [Google Scholar]
  20. Tjaberg T. B. Proteases of Clostridium botulinum. 3. Isolation and characterization of proteases from Clostridium botulinum types A,B,C,D and F. Acta Vet Scand. 1973;14(4):538–559. [PubMed] [Google Scholar]
  21. Tjaberg T. B. Proteases of Clostridium botulinum. I. Classification of proteases and literature survey. Acta Vet Scand. 1973;14(1):184–192. doi: 10.1186/BF03547421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Uehara M., Frank H. A. Sequence of events during germination of putrefactive anaerobe 3679 spores. J Bacteriol. 1967 Sep;94(3):506–511. doi: 10.1128/jb.94.3.506-511.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. VARY J. C., HALVORSON H. O. KINETICS OF GERMINATION OF BACILLUS SPORES. J Bacteriol. 1965 May;89:1340–1347. doi: 10.1128/jb.89.5.1340-1347.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES