Abstract
Isolate 761M is an unusual type I methanotroph that possesses a complete tricarboxylic acid cycle. Variants of this methanotroph that were capable of growth with methanol (isolate 761AR) or glucose (isolate 761H) have been isolated. Cultures of isolate 761H grown with glucose and casein hydrolysate as the sole carbon and energy sources retained the ability to grow on methane, contained methane monooxygenase and 3-hexulose phosphate synthase, and possessed intracytoplasmic membranes similar to those found in thin sections of isolate 761M grown on methane. Methane monooxygenase was also present in cultures of isolate 761AR grown on methanol and casein hydrolysate.
Full text
PDF![807](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a4/241618/ddf7ee546474/aem00155-0133.png)
![808](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a4/241618/98cc1cd2c16d/aem00155-0134.png)
![809](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a4/241618/b0c166dbed13/aem00155-0135.png)
![810](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a4/241618/66d5a4212937/aem00155-0136.png)
![811](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a4/241618/ab80a24c89d3/aem00155-0137.png)
![812](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a4/241618/06bbd5b5bbcb/aem00155-0138.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Colby J., Zatman L. J. Hexose phosphate synthese and tricarboxylic acid-cycle enzymes in bacterium 4B6, an obligate methylotroph. Biochem J. 1972 Aug;128(5):1373–1376. doi: 10.1042/bj1281373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davey J. F., Whittenbury R., Wilkinson J. F. The distribution in the methylobacteria of some key enzymes concerned with intermediary metabolism. Arch Mikrobiol. 1972;87(4):359–366. doi: 10.1007/BF00409135. [DOI] [PubMed] [Google Scholar]
- Davies S. L., Whittenbury R. Fine structure of methane and other hydrocarbon-utilizing bacteria. J Gen Microbiol. 1970 May;61(2):227–232. doi: 10.1099/00221287-61-2-227. [DOI] [PubMed] [Google Scholar]
- Ferenci T., Strom T., Quayle J. R. Oxidation of carbon monoxide and methane by Pseudomonas methanica. J Gen Microbiol. 1975 Nov;91(1):79–91. doi: 10.1099/00221287-91-1-79. [DOI] [PubMed] [Google Scholar]
- Haber C. L., Allen L. N., Zhao S., Hanson R. S. Methylotrophic bacteria: biochemical diversity and genetics. Science. 1983 Sep 16;221(4616):1147–1153. doi: 10.1126/science.221.4616.1147. [DOI] [PubMed] [Google Scholar]
- Heptinstall J., Quayle J. R. Pathways leading to and from serine during growth of Pseudomonas AM1 on C1 compounds or succinate. Biochem J. 1970 Apr;117(3):563–572. doi: 10.1042/bj1170563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patt T. E., Cole G. C., Bland J., Hanson R. S. Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. J Bacteriol. 1974 Nov;120(2):955–964. doi: 10.1128/jb.120.2.955-964.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Taylor I. J., Anthony C. A biochemical basis for obligate methylotrophy: properties of a mutant of Pseudomonas AM1 lacking 2-oxoglutarate dehydrogenase. J Gen Microbiol. 1976 Apr;93(2):259–265. doi: 10.1099/00221287-93-2-259. [DOI] [PubMed] [Google Scholar]