Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1984 Nov;48(5):936–943. doi: 10.1128/aem.48.5.936-943.1984

Isolation and characterization of a new Cytophaga species implicated in a work-related lung disease.

C A Liebert, M A Hood, F H Deck, K Bishop, D K Flaherty
PMCID: PMC241654  PMID: 6508308

Abstract

A yellow-pigmented, gram-negative, gliding bacterium isolated from an industrial water spray air humidification system was implicated as a causative agent in several occurrences of lung disease with hypersensitivity pneumonitis-like symptoms. The bacterium, designated WF-164, lacked microcysts or fruiting bodies and had a DNA base composition of 34.8 mol% of guanine plus cytosine. Gliding, flexing, nonflagellated cells measuring 0.3 by 3.5 to 8.9 micron were observed by using light and electron microscopy. Tests to determine utilization of selected carbohydrates revealed an amylolitic, chitinoclastic, noncellulytic bacterium. A number of additional biochemical and physiological tests were performed. DNA homology studies detected a 77.8% similarity to Cytophaga aquatilis (ATCC 29551). Comparisons of cellular fatty acid and carbohydrate contents of isolate WF-164 with a Flexibacter sp., several Cytophaga spp., and Flavobacterium reference strains revealed similar patterns to that of C. aquatilis. On the basis of these characteristics, isolate WF-164 was identified as a new Cytophaga sp.

Full text

PDF
936

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achenbach H. The pigments of Flexibacter elegans: novel and chemosystematically useful compounds. Arch Microbiol. 1974;101(2):131–144. doi: 10.1007/BF00455933. [DOI] [PubMed] [Google Scholar]
  2. Brenner D. J., Fanning G. R., Johnson K. E., Citarella R. V., Falkow S. Polynucleotide sequence relationships among members of Enterobacteriaceae. J Bacteriol. 1969 May;98(2):637–650. doi: 10.1128/jb.98.2.637-650.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
  4. Buechner H. A. Clinical aspects of fungus diseases of the lungs including laborory diagnosis and treatment. Adv Cardiopulm Dis. 1966;3:123–158. [PubMed] [Google Scholar]
  5. Callies E., Mannheim W. Deoxyribonucleic acid relatedness of some menaquinone-producing Flavobacterium and Cytophaga strains. Antonie Van Leeuwenhoek. 1980;46(1):41–49. doi: 10.1007/BF00422227. [DOI] [PubMed] [Google Scholar]
  6. Carlson R. V., Pacha R. E. Procedure for the isolation and enumeration of myxobacteria from aquatic habitats. Appl Microbiol. 1968 May;16(5):795–796. doi: 10.1128/am.16.5.795-796.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Christensen P. J., Cook F. D. The isolation and enumeration of cytophagas. Can J Microbiol. 1972 Dec;18(12):1933–1940. doi: 10.1139/m72-299. [DOI] [PubMed] [Google Scholar]
  8. Christensen P. J. The history, biology, and taxonomy of the Cytophaga group. Can J Microbiol. 1977 Dec;23(12):1599–1653. doi: 10.1139/m77-236. [DOI] [PubMed] [Google Scholar]
  9. DWORKIN M., VOELZ H. The formation and germination of microcysts in Myxococcus xanthus. J Gen Microbiol. 1962 Apr;28:81–85. doi: 10.1099/00221287-28-1-81. [DOI] [PubMed] [Google Scholar]
  10. DeMaria T. F., Burrell R. Effects of inhaled endotoxin-containing bacteria. Environ Res. 1980 Oct;23(1):87–97. doi: 10.1016/0013-9351(80)90096-1. [DOI] [PubMed] [Google Scholar]
  11. Edwards J. H., Griffiths A. J., Mullins J. Protozoa as sources of antigen in 'humidifier fever'. Nature. 1976 Dec 2;264(5585):438–439. doi: 10.1038/264438a0. [DOI] [PubMed] [Google Scholar]
  12. Fautz E., Rosenfelder G., Grotjahn L. Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. J Bacteriol. 1979 Dec;140(3):852–858. doi: 10.1128/jb.140.3.852-858.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Flaherty D. K., Deck F. H., Cooper J., Bishop K., Winzenburger P. A., Smith L. R., Bynum L., Witmer W. B. Bacterial endotoxin isolated from a water spray air humidification system as a putative agent of occupation-related lung disease. Infect Immun. 1984 Jan;43(1):206–212. doi: 10.1128/iai.43.1.206-212.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Flaherty D. K., Deck F. H., Hood M. A., Liebert C., Singleton F., Winzenburger P., Bishop K., Smith L. R., Bynum L. M., Witmer W. B. A Cytophaga species endotoxin as a putative agent of occupation-related lung disease. Infect Immun. 1984 Jan;43(1):213–216. doi: 10.1128/iai.43.1.213-216.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Follett E. A., Webley D. M. An electron microscope study of the cell surface of Cytophaga johnsonii and some observations on related organisms. Antonie Van Leeuwenhoek. 1965;31(4):361–382. doi: 10.1007/BF02045916. [DOI] [PubMed] [Google Scholar]
  16. Güde H. Occurrence of cytophagas in sewage plants. Appl Environ Microbiol. 1980 Apr;39(4):756–763. doi: 10.1128/aem.39.4.756-763.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Helander I., Salkinoja-Salonen M., Rylander R. Chemical structure and inhalation toxicity of lipopolysaccharides from bacteria on cotton. Infect Immun. 1980 Sep;29(3):859–862. doi: 10.1128/iai.29.3.859-862.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lewin R. A., Lounsbery D. M. Isolation, cultivation and characterization of flexibacteria. J Gen Microbiol. 1969 Oct;58(2):145–170. doi: 10.1099/00221287-58-2-145. [DOI] [PubMed] [Google Scholar]
  20. Luft J. H. Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec. 1971 Nov;171(3):347–368. doi: 10.1002/ar.1091710302. [DOI] [PubMed] [Google Scholar]
  21. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  22. Mandel M., Igambi L., Bergendahl J., Dodson M. L., Jr, Scheltgen E. Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol. 1970 Feb;101(2):333–338. doi: 10.1128/jb.101.2.333-338.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mandel M., Leadbetter E. R. Deoxyribonucleic acid base composition of myxobacteria. J Bacteriol. 1965 Dec;90(6):1795–1796. doi: 10.1128/jb.90.6.1795-1796.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mandel M., Lewin R. A. Deoxyribonucleic acid base composition of flexibacteria. J Gen Microbiol. 1969 Oct;58(2):171–178. doi: 10.1099/00221287-58-2-171. [DOI] [PubMed] [Google Scholar]
  25. McMeekin T. A., Shewan J. M. A review. Taxonomic strategies for Flavobacterium and related genera. J Appl Bacteriol. 1978 Dec;45(3):321–332. doi: 10.1111/j.1365-2672.1978.tb04232.x. [DOI] [PubMed] [Google Scholar]
  26. Mitchell T. G., Hendrie M. S., Shewan J. M. The taxonomy, differentiation and identification of Cytophaga species. J Appl Bacteriol. 1969 Mar;32(1):40–50. doi: 10.1111/j.1365-2672.1969.tb02187.x. [DOI] [PubMed] [Google Scholar]
  27. Moss C. W., Lambert M. A., Merwin W. H. Comparison of rapid methods for analysis of bacterial fatty acids. Appl Microbiol. 1974 Jul;28(1):80–85. doi: 10.1128/am.28.1.80-85.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Oades J. M. Gas-liquid chromatography of alditol acetates and its application to the analysis of sugars in complex hydrolysates. J Chromatogr. 1967 Jun;28(2):246–252. doi: 10.1016/s0021-9673(01)85963-x. [DOI] [PubMed] [Google Scholar]
  29. Pate J. L., Ordal E. J. The fine structure of Chondrococcus columnaris. I. Structure and formation of mesosomes. J Cell Biol. 1967 Oct;35(1):1–13. doi: 10.1083/jcb.35.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Perry L. B. Gliding motility in some non-spreading flexibacteria. J Appl Bacteriol. 1973 Jun;36(2):227–232. doi: 10.1111/j.1365-2672.1973.tb04095.x. [DOI] [PubMed] [Google Scholar]
  31. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reed C. E., Swanson M. C., Lopez M., Ford A. M., Major J., Witmer W. B., Valdes T. B. Measurement of IgG antibody and airborne antigen to control an industrial outbreak of hypersensitivity pneumonitis. J Occup Med. 1983 Mar;25(3):207–210. doi: 10.1097/00043764-198303000-00014. [DOI] [PubMed] [Google Scholar]
  33. Reichenbach H. Taxonomy of the gliding bacteria. Annu Rev Microbiol. 1981;35:339–364. doi: 10.1146/annurev.mi.35.100181.002011. [DOI] [PubMed] [Google Scholar]
  34. Rylander R., Haglind P., Lundholm M., Mattsby I., Stenqvist K. Humidifier fever and endotoxin exposure. Clin Allergy. 1978 Sep;8(5):511–516. doi: 10.1111/j.1365-2222.1978.tb01504.x. [DOI] [PubMed] [Google Scholar]
  35. Rylander R., Snella M. C. Acute inhalation toxicity of cotton plant dusts. Br J Ind Med. 1976 Aug;33(3):175–180. doi: 10.1136/oem.33.3.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. SORIANO S., LEWIN R. A. GLIDING MICROBES: SOME TAXONOMIC RECONSIDERATIONS. Antonie Van Leeuwenhoek. 1965;31:66–79. doi: 10.1007/BF02045876. [DOI] [PubMed] [Google Scholar]
  37. STEMPAK J. G., WARD R. T. AN IMPROVED STAINING METHOD FOR ELECTRON MICROSCOPY. J Cell Biol. 1964 Sep;22:697–701. doi: 10.1083/jcb.22.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Seidler R. J., Mandel M. Quantitative aspects of deoxyribonucleic acid renaturation: base composition, state of chromosome replication, and polynucleotide homologies. J Bacteriol. 1971 May;106(2):608–614. doi: 10.1128/jb.106.2.608-614.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stanier R. Y. THE CYTOPHAGA GROUP: A CONTRIBUTION TO THE BIOLOGY OF MYXOBACTERIA. Bacteriol Rev. 1942 Sep;6(3):143–196. doi: 10.1128/br.6.3.143-196.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Walker R. W. Cis-11-hexadecenoic acid from Cytophaga hutchinsonii lipids. Lipids. 1969 Jan;4(1):15–18. doi: 10.1007/BF02531788. [DOI] [PubMed] [Google Scholar]
  41. Ware J. C., Dworkin M. Fatty acids of Myxococcus xanthus. J Bacteriol. 1973 Jul;115(1):253–261. doi: 10.1128/jb.115.1.253-261.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weeks O. B. Problems concerning the relationships of cytophagas and flavobacteria. J Appl Bacteriol. 1969 Mar;32(1):13–18. doi: 10.1111/j.1365-2672.1969.tb02182.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES