Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1984 Nov;48(5):944–950. doi: 10.1128/aem.48.5.944-950.1984

Comparison of p-Nitrophenol Biodegradation in Field and Laboratory Test Systems

J C Spain 1,*, P A Van Veld 1, C A Monti 1, P H Pritchard 1, C R Cripe 1
PMCID: PMC241655  PMID: 16346668

Abstract

Acclimation of microbial communities exposed to p-nitrophenol (PNP) was measured in laboratory test systems and in a freshwater pond. Laboratory tests were conducted in shake flasks with water, shake flasks with water and sediment, eco-cores, and two sizes of microcosm. The sediment and water samples used in the laboratory experiments were obtained from the pond. After a 6-day acclimation period, PNP was biodegraded rapidly in the pond. When the pond was treated with PNP a second time, biodegradation began immediately. The acclimation periods in laboratory test systems that contained sediment were similar to that in the pond. The acclimation period was threefold longer in shake flasks without sediment. PNP was biodegraded more slowly by microbial communities acclimated in the laboratory than it was in the pond, and the rate of biodegradation varied with the type of test. The number of bacteria able to mineralize PNP increased by 3 orders of magnitude in the pond during the acclimation period. Similar increases accompanied acclimation in the laboratory systems.

Full text

PDF
944

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Lehmicke L. G., Williams R. T., Crawford R. L. 14C-most-probable-number method for enumeration of active heterotrophic microorganisms in natural waters. Appl Environ Microbiol. 1979 Oct;38(4):644–649. doi: 10.1128/aem.38.4.644-649.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Sethunathan N. Degradation of parathion in flooded acid soils. J Agric Food Chem. 1973 Jul-Aug;21(4):602–604. doi: 10.1021/jf60188a042. [DOI] [PubMed] [Google Scholar]
  3. Spain J. C., Pritchard P. H., Bourquin A. W. Effects of adaptation on biodegradation rates in sediment/water cores from estuarine and freshwater environments. Appl Environ Microbiol. 1980 Oct;40(4):726–734. doi: 10.1128/aem.40.4.726-734.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Spain J. C., Van Veld P. A. Adaptation of natural microbial communities to degradation of xenobiotic compounds: effects of concentration, exposure time, inoculum, and chemical structure. Appl Environ Microbiol. 1983 Feb;45(2):428–435. doi: 10.1128/aem.45.2.428-435.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Waid J. S. The possible importance of transfer factors in the bacterial degradation of herbicides in natural ecosystems. Residue Rev. 1972;44:65–71. doi: 10.1007/978-1-4615-8491-9_4. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES