Abstract
The fate of six organic compounds during rapid infiltration of primary wastewater through soil columns was studied. Feed solutions were prepared which contained all six compounds in individual concentrations ranging from 1 to 1,000 micrograms/liter and were applied to separate soil columns on a flooding-drying schedule. Feed solutions and column effluents were analyzed for the compounds by XAD resin (Rohm and Haas Co.) extraction and gas chromatography-mass spectrometry during each of three successive inundation cycles. Breakthrough profiles of o-phenylphenol were relatively consistent during the test, with fractional breakthrough (mass output/mass input) being independent of input concentration. Consistent profiles were also observed for 2-(methylthio)benzothiazole, although fractional breakthroughs were higher at lower input concentrations, indicating that removal processes were operating less efficiently at these levels. The behavior of p-dichlorobenzene was similar to that of 2-(methylthio)benzothiazole after the first inundation cycle, with the exception that increased fractional breakthroughs were observed at the highest input concentration as well. Microbial adaptation was evident for benzophenone, 2-methylnaphthalene, and p-(1,1,3,3-tetramethylbutyl)phenol, as indicated by increased removal efficiencies during successive inundation cycles, especially at the higher input concentrations. Column effluent concentrations of the latter two compounds were independent of input concentrations during the final stage of the test. Microbial activity and adaptation were confirmed for several of the compounds by using isotopes and measuring the extent of mineralization in batch tests with soil from one of the columns.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boethling R. S., Alexander M. Effect of concentration of organic chemicals on their biodegradation by natural microbial communities. Appl Environ Microbiol. 1979 Jun;37(6):1211–1216. doi: 10.1128/aem.37.6.1211-1216.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herbes S. E. Rates of microbial transformation of polycyclic aromatic hydrocarbons in water and sediments in the vicinity of a coal-coking wastewater discharge. Appl Environ Microbiol. 1981 Jan;41(1):20–28. doi: 10.1128/aem.41.1.20-28.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Law A. T., Button D. K. Multiple-carbon-source-limited growth kinetics of a marine coryneform bacterium. J Bacteriol. 1977 Jan;129(1):115–123. doi: 10.1128/jb.129.1.115-123.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin H. E., Subba-Rao R. V., Alexander M. Rates of mineralization of trace concentrations of aromatic compounds in lake water and sewage samples. Appl Environ Microbiol. 1982 May;43(5):1133–1138. doi: 10.1128/aem.43.5.1133-1138.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaub S. A., Sorber C. A. Virus and bacteria removal from wastewater by rapid infiltration through soil. Appl Environ Microbiol. 1977 Mar;33(3):609–619. doi: 10.1128/aem.33.3.609-619.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spain J. C., Van Veld P. A. Adaptation of natural microbial communities to degradation of xenobiotic compounds: effects of concentration, exposure time, inoculum, and chemical structure. Appl Environ Microbiol. 1983 Feb;45(2):428–435. doi: 10.1128/aem.45.2.428-435.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Subba-Rao R. V., Rubin H. E., Alexander M. Kinetics and extent of mineralization of organic chemicals at trace levels in freshwater and sewage. Appl Environ Microbiol. 1982 May;43(5):1139–1150. doi: 10.1128/aem.43.5.1139-1150.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Kooij D., Hijnen W. A. Nutritional versatility of a starch-utilizing Flavobacterium at low substrate concentrations. Appl Environ Microbiol. 1983 Mar;45(3):804–810. doi: 10.1128/aem.45.3.804-810.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
