Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1984 Dec;48(6):1221–1230. doi: 10.1128/aem.48.6.1221-1230.1984

Assessing Phytoplankton and Bacterioplankton Production During Early Spring in Lake Erken, Sweden

Russell T Bell 1,*, Jorma Kuparinen 1
PMCID: PMC241713  PMID: 16346681

Abstract

The spring development of both phytoplankton and bacterioplankton was investigated between 18 April and 7 May 1983 in mesotrophic Lake Erken, Sweden. By using the lake as a batch culture, our aim was to estimate, via different methods, the production of phytoplankton and bacterioplankton in the lake and to compare these production estimates with the actual increase in phytoplankton and bacterioplankton biomass. The average water temperature was 3.5°C. Of the phytoplankton biomass, >90% was the diatom Stephanodiscus hantzchii var. pusillus, by the peak of the bloom. The 14C and O2 methods of estimating primary production gave equivalent results (r = 0.999) with a photosynthetic quotient of 1.63. The theoretical photosynthetic quotient predicted from the C/NO3 N assimilation ratio was 1.57. The total integrated incorporation of [14C]bicarbonate into particulate material (>1 μm) was similar to the increase in phytoplankton carbon determined from cell counts. Bacterioplankton increased from 0.5 × 109 to 1.52 × 109 cells liter−1 (∼0.5 μg of C liter−1 day−1). Estimates of bacterioplankton production from rates of [3H]thymidine incorporation were ca. 1.2 to 1.7 μg of C liter−1 day−1. Bacterial respiration, measured by a high-precision Winkler technique, was estimated as 4.8 μg of C liter−1 day−1, indicating a bacterial growth yield of 25%. The bulk of the bacterioplankton production was accounted for by algal extracellular products. Gross bacterioplankton production (production plus respiration) was 20% of gross primary production, per square meter of surface area. We found no indication that bacterioplankton production was underestimated by the [3H]thymidine incorporation method.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell R. T., Ahlgren G. M., Ahlgren I. Estimating Bacterioplankton Production by Measuring [H]thymidine Incorporation in a Eutrophic Swedish Lake. Appl Environ Microbiol. 1983 Jun;45(6):1709–1721. doi: 10.1128/aem.45.6.1709-1721.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brock T. D., Clyne J. Significance of algal excretory products for growth of epilimnetic bacteria. Appl Environ Microbiol. 1984 Apr;47(4):731–734. doi: 10.1128/aem.47.4.731-734.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fuhrman J. A., Azam F. Bacterioplankton secondary production estimates for coastal waters of british columbia, antarctica, and california. Appl Environ Microbiol. 1980 Jun;39(6):1085–1095. doi: 10.1128/aem.39.6.1085-1095.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hagström A., Larsson U., Hörstedt P., Normark S. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl Environ Microbiol. 1979 May;37(5):805–812. doi: 10.1128/aem.37.5.805-812.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Novitsky J. A. Heterotrophic activity throughout a vertical profile of seawater and sediment in halifax harbor, Canada. Appl Environ Microbiol. 1983 Jun;45(6):1753–1760. doi: 10.1128/aem.45.6.1753-1760.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Riemann B., Søndergaard M. Measurements of diel rates of bacterial secondary production in aquatic environments. Appl Environ Microbiol. 1984 Apr;47(4):632–638. doi: 10.1128/aem.47.4.632-638.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Watson S. W., Novitsky T. J., Quinby H. L., Valois F. W. Determination of bacterial number and biomass in the marine environment. Appl Environ Microbiol. 1977 Apr;33(4):940–946. doi: 10.1128/aem.33.4.940-946.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES