Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1982 Feb;43(2):319–324. doi: 10.1128/aem.43.2.319-324.1982

Reduction of Ferric Iron in Anaerobic, Marine Sediment and Interaction with Reduction of Nitrate and Sulfate

Jan Sørensen 1
PMCID: PMC241825  PMID: 16345937

Abstract

Studies were carried out to elucidate the nature and importance of Fe3+ reduction in anaerobic slurries of marine surface sediment. A constant accumulation of Fe2+ took place immediately after the endogenous NO3 was depleted. Pasteurized controls showed no activity of Fe3+ reduction. Additions of 0.2 mM NO3 and NO2 to the active slurries arrested the Fe3+ reduction, and the process was resumed only after a depletion of the added compounds. Extended, initial aeration of the sediment did not affect the capacity for reduction of NO3 and Fe3+, but the treatments with NO3 increased the capacity for Fe3+ reduction. Addition of 20 mM MoO42− completely inhibited the SO42− reduction, but did not affect the reduction of Fe3+. The process of Fe3+ reduction was most likely associated with the activity of facultative anaerobic, NO3-reducing bacteria. In surface sediment, the bulk of the Fe3+ reduction may be microbial, and the process may be important for mineralization in situ if the availability of NO3 is low.

Full text

PDF
319

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Lascelles J., Burke K. A. Reduction of ferric iron by L-lactate and DL-glycerol-3-phosphate in membrane preparations from Staphylococcus aureus and interactions with the nitrate reductase system. J Bacteriol. 1978 May;134(2):585–589. doi: 10.1128/jb.134.2.585-589.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ottow J. C. Selection, characterization and iron-reducing capacity of nitrate reductaseless (nit-) mutants of iron-reducing bacteria. Z Allg Mikrobiol. 1970;10(1):55–62. [PubMed] [Google Scholar]
  3. Sørensen J., Christensen D., Jørgensen B. B. Volatile Fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl Environ Microbiol. 1981 Jul;42(1):5–11. doi: 10.1128/aem.42.1.5-11.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES