Abstract
Viable bacteria were recovered from estuarine waters passed through a 0.2-μm polycarbonate membrane filter. The recovery method included the use of a dilute nutrient broth for primary enrichment followed by conditioning of the organism to a dilute nutrient solid medium. These bacteria were gram-negative rods and coccobacilli having an NaCl requirement and, upon initial culturing, low nutritional requirements. In response to increased nutrient preparations, these microorganisms underwent an increase in size and growth rate, giving rise to visible colonies. Phenotypic characterization suggests that species of Vibrio, Aeromonas, Pseudomonas, and Alcaligenes were among the isolates. The abundance and the nutritional requirements of these ultramicrobacteria imply that they represent a class of microorganisms which have successfully adjusted to poor nutrient conditions.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. I., Heffernan W. P. Isolation and characterization of filterable marine bacteria. J Bacteriol. 1965 Dec;90(6):1713–1718. doi: 10.1128/jb.90.6.1713-1718.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guelin A. M., Mishustina I. E., Andreev L. V., Bobyk M. A., Lambina V. A. Some problems of the ecology and taxonomy of marine microvibrios. Biol Bull Acad Sci USSR. 1978 May-Jun;5(3):336–340. [PubMed] [Google Scholar]
- Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JANNASCH H. W. Studies on planktonic bacteria by means of a direct membrane filter method. J Gen Microbiol. 1958 Jun;18(3):609–620. doi: 10.1099/00221287-18-3-609. [DOI] [PubMed] [Google Scholar]
- Novitsky J. A., Morita R. Y. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl Environ Microbiol. 1976 Oct;32(4):617–622. doi: 10.1128/aem.32.4.617-622.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Novitsky J. A., Morita R. Y. Survival of a psychrophilic marine Vibrio under long-term nutrient starvation. Appl Environ Microbiol. 1977 Mar;33(3):635–641. doi: 10.1128/aem.33.3.635-641.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OPPENHEIMER C. H. The membrane filter in marine microbiology. J Bacteriol. 1952 Dec;64(6):783–786. doi: 10.1128/jb.64.6.783-786.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SINGER J., VOLCANI B. E. An improved ferric chloride test for differentiating Proteus-Providence group from other Enterobacteriaceae. J Bacteriol. 1955 Mar;69(3):303–306. doi: 10.1128/jb.69.3.303-306.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sochard M. R., Wilson D. F., Austin B., Colwell R. R. Bacteria associated with the surface and gut of marine copepods. Appl Environ Microbiol. 1979 Apr;37(4):750–759. doi: 10.1128/aem.37.4.750-759.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor W. I., Achanzar D. Catalase test as an aid to the identification of Enterobacteriaceae. Appl Microbiol. 1972 Jul;24(1):58–61. doi: 10.1128/am.24.1.58-61.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torrella F., Morita R. Y. Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl Environ Microbiol. 1981 Feb;41(2):518–527. doi: 10.1128/aem.41.2.518-527.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]