Abstract
The formation and location of endo-1,4-β-glucanases and β-glucosidases were studied in cultures of Cellulomonas uda grown on microcrystalline cellulose, carboxymethyl cellulose, printed newspaper, and some mono- or disaccharides. Endo-1,4-Glucanases were found to be extracellular, but a very small amount of cell-bound endo-1,4-β-glucanase was considered to be the basal endoglucanase level of the cells. The formation of extracellular endo-1,4-β-glucanases was induced by cellobiose and repressed by glucose. Extracellular endoglucanase activity was inhibited by cellobiose but not by glucose. β-Glucosidases, on the other hand, were formed constitutively and found to be cell bound. β-Glucosidase activity was inhibited noncompetitively by glucose. Some characteristics such as the optimal pH for and the thermostability of the endoglucanases and β-glucosidases and the end products of cellulose degradation were determined.
Full text
PDF![44](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1485/241966/555606165aed/aem00176-0052.png)
![45](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1485/241966/c0e34a7d4094/aem00176-0053.png)
![46](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1485/241966/94d8c8272e15/aem00176-0054.png)
![47](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1485/241966/b7c7b588bd1b/aem00176-0055.png)
![48](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1485/241966/e472d036515f/aem00176-0056.png)
![49](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1485/241966/58a1e03b1f55/aem00176-0057.png)
![50](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1485/241966/0ef3611a4be6/aem00176-0058.png)
![51](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1485/241966/498e3cb35d08/aem00176-0059.png)
![52](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1485/241966/2eaf482f39c2/aem00176-0060.png)
![53](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1485/241966/84bb3ecabd38/aem00176-0061.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALEXANDER J. K. Characteristics of cellobiose phosphorylase. J Bacteriol. 1961 Jun;81:903–910. doi: 10.1128/jb.81.6.903-910.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alexander J. K. Purification and specificity of cellobiose phosphorylase from Clostridium thermocellum. J Biol Chem. 1968 Jun 10;243(11):2899–2904. [PubMed] [Google Scholar]
- Aït N., Creuzet N., Cattanéo J. Characterization and purification of thermostable beta-glucosidase from Clostridium thermocellum. Biochem Biophys Res Commun. 1979 Sep 27;90(2):537–546. doi: 10.1016/0006-291x(79)91269-5. [DOI] [PubMed] [Google Scholar]
- Berg B. Cellulase location in Cellvibrio fulvus. Can J Microbiol. 1975 Jan;21(1):51–57. doi: 10.1139/m75-007. [DOI] [PubMed] [Google Scholar]
- Berghem L. E., Pettersson L. G. The mechanism of enzymatic cellulose degradation. Purification of a cellulolytic enzyme from Trichoderma viride active on highly ordered cellulose. Eur J Biochem. 1973 Aug 1;37(1):21–30. doi: 10.1111/j.1432-1033.1973.tb02952.x. [DOI] [PubMed] [Google Scholar]
- Breuil C., Kushner D. J. Cellulase induction and the use of cellulose as a preferred growth substrate by Cellvibrio gilvus. Can J Microbiol. 1976 Dec;22(12):1776–1781. doi: 10.1139/m76-264. [DOI] [PubMed] [Google Scholar]
- Béguin P., Eisen H. Purification and partial characterization of three extracellular cellulases from Cellulomonas sp. Eur J Biochem. 1978 Jul 3;87(3):525–531. doi: 10.1111/j.1432-1033.1978.tb12403.x. [DOI] [PubMed] [Google Scholar]
- Chang W. T., Thayer D. W. The cellulase system of a Cytophaga species. Can J Microbiol. 1977 Sep;23(9):1285–1292. doi: 10.1139/m77-192. [DOI] [PubMed] [Google Scholar]
- Eriksson K. E., Hamp S. G. Regulation of Endo-1,4-beta-glucanase production in Sporotrichum pulverulentum. Eur J Biochem. 1978 Sep 15;90(1):183–190. doi: 10.1111/j.1432-1033.1978.tb12589.x. [DOI] [PubMed] [Google Scholar]
- Han Y. W., Srinivasan V. R. Isolation and characterization of a cellulose-utilizing bacterium. Appl Microbiol. 1968 Aug;16(8):1140–1145. doi: 10.1128/am.16.8.1140-1145.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hitchner E. V., Leatherwood J. M. Use of a cellulase-derepressed mutant of cellulomonas in the production of a single-cell protein product from cellulose. Appl Environ Microbiol. 1980 Feb;39(2):382–386. doi: 10.1128/aem.39.2.382-386.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hulme M. A. Viscometric determination of carboxymethylcellulase in standard international units. Arch Biochem Biophys. 1971 Nov;147(1):49–54. doi: 10.1016/0003-9861(71)90308-0. [DOI] [PubMed] [Google Scholar]
- Hägerdal B. G., Ferchak J. D., Pye E. K. Cellulolytic Enzyme System of Thermoactinomyces sp. Grown on Microcrystalline Cellulose. Appl Environ Microbiol. 1978 Oct;36(4):606–612. doi: 10.1128/aem.36.4.606-612.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hägerdal B., Harris H., Pye E. K. Association of beta-glucosidase with intact cells of Thermoactinomyces. Biotechnol Bioeng. 1979 Mar;21(3):345–355. doi: 10.1002/bit.260210302. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lee B. H., Blackburn T. H. Cellulase production by a thermophilic clostridium species. Appl Microbiol. 1975 Sep;30(3):346–353. doi: 10.1128/am.30.3.346-353.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loewenberg J. R., Chapman C. M. Sophorose metabolism and cellulase induction in Trichoderma. Arch Microbiol. 1977 May 13;113(1-2):61–64. doi: 10.1007/BF00428581. [DOI] [PubMed] [Google Scholar]
- Nisizawa T., Suzuki H., Nakayama M., Nisizawa K. Inductive formation of cellulase by sophorose in Trichoderma viride. J Biochem. 1971 Sep;70(3):375–385. doi: 10.1093/oxfordjournals.jbchem.a129652. [DOI] [PubMed] [Google Scholar]
- Nisizawa T., Suzuki H., Nisizawa K. Catabolite repression of cellulase formation in Trichoderma viride. J Biochem. 1972 Jun;71(6):999–1007. doi: 10.1093/oxfordjournals.jbchem.a129872. [DOI] [PubMed] [Google Scholar]
- Osmundsvag K., Goksoyr J. Cellulases from Sporocytophaga myxococcoides. Purification and Properties. Eur J Biochem. 1975 Sep 15;57(2):405–409. doi: 10.1111/j.1432-1033.1975.tb02314.x. [DOI] [PubMed] [Google Scholar]
- Priest F. G. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev. 1977 Sep;41(3):711–753. doi: 10.1128/br.41.3.711-753.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapp P., Grote E., Wagner F. Formation and Location of 1,4-beta-Glucanases and 1,4-beta-Glucosidases from Penicillium janthinellum. Appl Environ Microbiol. 1981 Apr;41(4):857–866. doi: 10.1128/aem.41.4.857-866.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sternberg D., Mandels G. R. Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol. 1979 Sep;139(3):761–769. doi: 10.1128/jb.139.3.761-769.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart B. J., Leatherwood J. M. Derepressed synthesis of cellulase by Cellulomonas. J Bacteriol. 1976 Nov;128(2):609–615. doi: 10.1128/jb.128.2.609-615.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stutzenberger F. J. Cellulase production by Thermomonospora curvata isolated from municipal solid waste compost. Appl Microbiol. 1971 Aug;22(2):147–152. doi: 10.1128/am.22.2.147-152.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamane K., Suzuki H., Hirotani M., Ozawa H., Nisizawa K. Effect of nature and supply of carbon sources on cellulase formation in Pseudomonas fluorescens var. cellulosa. J Biochem. 1970 Jan;67(1):9–18. doi: 10.1093/oxfordjournals.jbchem.a129238. [DOI] [PubMed] [Google Scholar]
- Yamane K., Yoshikawa T., Suzuki H., Nisizawa K. Localization of cellulase components in Pseudomonas fluorescens var. cellulosa. J Biochem. 1971 Apr;69(4):771–780. doi: 10.1093/oxfordjournals.jbchem.a129525. [DOI] [PubMed] [Google Scholar]