Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1982 Jul;44(1):171–178. doi: 10.1128/aem.44.1.171-178.1982

Influences of pH, Temperature, and Moisture on Gaseous Tritium Uptake in Surface Soils

Robert D Fallon 1,
PMCID: PMC241986  PMID: 16346053

Abstract

In South Carolina surface soils, the uptake of gaseous tritium (T2, HT, or both) showed a broad optimal temperature response from about 20 to 50°C, with the highest rates at 35 to 45°C. The optimal pH was in the range of 4 to 7. Uptake rates declined at the wet and dry extremes in soil moisture content. Inhibition seen upon the addition of hydrogen or carbon monoxide to the soil atmosphere suggested that hydrogenase may be responsible for T2-HT uptake in soil. During the period of most rapid recovery in a 36-day incubation of reinoculated, sterilized soil, T2-HT uptake rates doubled every 2 to 4 days. Thus, T2-HT uptake appears to be biologically mediated. Soil uptake of T2-HT was not severely limited by pH, temperature, or moisture in the soils tested. Thus, rapid exchange of gaseous tritium into soil water must be expected and accounted for in modeling the isotope distributions around nuclear facilities.

Full text

PDF
171

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. W., Mortenson L. E., Chen J. S. Hydrogenase. Biochim Biophys Acta. 1980 Dec;594(2-3):105–176. doi: 10.1016/0304-4173(80)90007-5. [DOI] [PubMed] [Google Scholar]
  2. Anand S. R., Krasna A. I. Catalysis of the H2-HTO exchange by hydrogenase. A new assay for hydrogenase. Biochemistry. 1965 Dec;4(12):2747–2753. doi: 10.1021/bi00888a027. [DOI] [PubMed] [Google Scholar]
  3. Arp D. J., Burris R. H. Purification and properties of the particulate hydrogenase from the bacteroids of soybean root nodules. Biochim Biophys Acta. 1979 Oct 11;570(2):221–230. doi: 10.1016/0005-2744(79)90142-6. [DOI] [PubMed] [Google Scholar]
  4. Bothe H., Distler E., Eisbrenner G. Hydrogen metabolism in blue-green algae. Biochimie. 1978;60(3):277–289. doi: 10.1016/s0300-9084(78)80824-4. [DOI] [PubMed] [Google Scholar]
  5. Daniels L., Fulton G., Spencer R. W., Orme-Johnson W. H. Origin of hydrogen in methane produced by Methanobacterium thermoautotrophicum. J Bacteriol. 1980 Feb;141(2):694–698. doi: 10.1128/jb.141.2.694-698.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis D. H., Stanier R. Y., Doudoroff M., Mandel M. Taxonomic studies on some gram negative polarly flagellated "hydrogen bacteria" and related species. Arch Mikrobiol. 1970;70(1):1–13. doi: 10.1007/BF00691056. [DOI] [PubMed] [Google Scholar]
  7. Glick B. R., Martin W. G., Martin S. M. Purification and properties of the periplasmic hydrogenase from Desulfovibrio desulfuricans. Can J Microbiol. 1980 Oct;26(10):1214–1223. doi: 10.1139/m80-203. [DOI] [PubMed] [Google Scholar]
  8. Harris R. F., Gardner W. R., Adebayo A. A., Sommers L. E. Agar dish isopiestic equilibration method for controlling the water potential of solid substrates. Appl Microbiol. 1970 Mar;19(3):536–537. doi: 10.1128/am.19.3.536-537.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Houchins J. P., Burris R. H. Comparative characterization of two distinct hydrogenases from Anabaena sp. strain 7120. J Bacteriol. 1981 Apr;146(1):215–221. doi: 10.1128/jb.146.1.215-221.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lim S. T. Determination of Hydrogenase in Free-living Cultures of Rhizobium japonicum and Energy Efficiency of Soybean Nodules. Plant Physiol. 1978 Oct;62(4):609–611. doi: 10.1104/pp.62.4.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maier R. J., Hanus F. J., Evans H. J. Regulation of hydrogenase in Rhizobium japonicum. J Bacteriol. 1979 Feb;137(2):825–829. doi: 10.1128/jb.137.2.825-829.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. PECK H. D., Jr, GEST H. Hydrogenase of Clostridium butylicum. J Bacteriol. 1957 Apr;73(4):569–580. doi: 10.1128/jb.73.4.569-580.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Radmer R. J., Kok B. Rate-temperature curves as an unambiguous indicator of biological activity in soil. Appl Environ Microbiol. 1979 Aug;38(2):224–228. doi: 10.1128/aem.38.2.224-228.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SCHATZ A., BOVELL C., Jr Growth and hydrogenase activity of a new bacterium, Hydrogenomonas facilis. J Bacteriol. 1952 Jan;63(1):87–98. doi: 10.1128/jb.63.1.87-98.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schink B., Probst I. Competitive inhibition of the membrane-bound hydrogenase of Alcaligenes eutrophus by molecular oxygen. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1563–1569. doi: 10.1016/s0006-291x(80)80076-3. [DOI] [PubMed] [Google Scholar]
  16. Schlegel H. G. Physiology and biochemistry of knallgasbacteria. Adv Comp Physiol Biochem. 1966;2:185–236. doi: 10.1016/b978-0-12-395511-1.50008-1. [DOI] [PubMed] [Google Scholar]
  17. Schneider K., Schlegel H. G. Production of superoxide radicals by soluble hydrogenase from Alcaligenes eutrophus H16. Biochem J. 1981 Jan 1;193(1):99–107. doi: 10.1042/bj1930099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schrauzer G. N. Nonenzymatic simulation of nitrogenase reactions and the mechanism of biological nitrogen fixation. Angew Chem Int Ed Engl. 1975 Aug;14(8):514–522. doi: 10.1002/anie.197505141. [DOI] [PubMed] [Google Scholar]
  19. Smith L. A., Hill S., Yates M. G. Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria. Nature. 1976 Jul 15;262(5565):209–210. doi: 10.1038/262209a0. [DOI] [PubMed] [Google Scholar]
  20. Spencer R. W., Daniels L., Fulton G., Orme-Johnson W. H. Product isotope effects on in vivo methanogenesis by Methanobacterium thermoautotrophicum. Biochemistry. 1980 Aug 5;19(16):3678–3683. doi: 10.1021/bi00557a007. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES