Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1982 Jul;44(1):179–183. doi: 10.1128/aem.44.1.179-183.1982

Comparison of methods for quantitative determinations of airborne bacteria and evaluation of total viable counts.

I M Lundholm
PMCID: PMC241987  PMID: 6751223

Abstract

Three different methods of estimating airborne bacteria were compared. An Anderson sampler, a slit sampler, an impinger, and filter samplers with gelatine filters or membrane filters were tested for collection efficiency. The comparisons were made in laboratory experiments with an aerosol of Staphylococcus epidermidis or Serratia marcescens, in field experiments in two different industries, i.e., cotton mill and sewage plant, and in experiments with skin fragment sampling. Experiments were also performed estimating the total number of viable microorganisms on the airborne particles. The Andersen sampler gave the highest bacterial counts in all environments tested. The slit sampler gave statistically lower counts only in the aerosol experiments and cotton mill experiments, where the size of the majority of the particles carrying visible bacteria was 2 to 6 micrometers or smaller. In the sewage plant and skin fragment experiments, where the particles were mainly 5 micrometers or larger, the difference was not significant. The filters were efficient in sampling in skin fragment experiments only. With the agar impingement method, the total viable cell count showed a rising index value with increasing particle size. A mean of 13 bacteria was found per particle in the cotton mill, a mean of 24 in the sewage plant, and a mean of 147 in skin fragment experiments.

Full text

PDF
179

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN A. A. New sampler for the collection, sizing, and enumeration of viable airborne particles. J Bacteriol. 1958 Nov;76(5):471–484. doi: 10.1128/jb.76.5.471-484.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Charnley J. Postoperative infection after total hip replacement with special reference to air contamination in the operating room. Clin Orthop Relat Res. 1972 Sep;87:167–187. doi: 10.1097/00003086-197209000-00020. [DOI] [PubMed] [Google Scholar]
  3. Cinkotai F. F., Lockwood M. G., Rylander R. Airborne micro-organisms and prevalence of byssinotic symptoms in cotton mills. Am Ind Hyg Assoc J. 1977 Oct;38(10):554–559. doi: 10.1080/0002889778507669. [DOI] [PubMed] [Google Scholar]
  4. Cinkotai F. F., Whitaker C. J. Airborne bacteria and the prevalence of byssinotic symptoms in 21 cotton spinning mills in Lancashire. Ann Occup Hyg. 1978 Dec;21(3):239–250. doi: 10.1093/annhyg/21.3.239. [DOI] [PubMed] [Google Scholar]
  5. Fields N. D., Oxborrow G. S., Puleo J. R., Herring C. M. Evaluation fo membrane filter field monitors for microbiological air sampling. Appl Microbiol. 1974 Mar;27(3):517–520. doi: 10.1128/am.27.3.517-520.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hambraeus A., Benediktsdóttir E. Airborne non-sporeforming anaerobic bacteria. J Hyg (Lond) 1980 Apr;84(2):181–189. doi: 10.1017/s0022172400026681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Koller W., Rotter M. Weitere Untersuchungen uber die Eignung von Gelatinefiltern zur Sammlung von Luftkeimen. Zentralbl Bakteriol Orig B. 1974 Dec;159(5-6):546–559. [PubMed] [Google Scholar]
  8. LIDWELL O. M., NOBLE W. C., DOLPHIN G. W. The use of radiation to estimate the numbers of micro-organisms in airborne particles. J Hyg (Lond) 1959 Sep;57:299–308. doi: 10.1017/s0022172400020167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lidwell O. M., Noble W. C. A modification of the Andersen sampler for use in occupied environments. J Appl Bacteriol. 1965 Aug;28(2):280–282. doi: 10.1111/j.1365-2672.1965.tb02154.x. [DOI] [PubMed] [Google Scholar]
  10. MAY K. R. CALIBRATION OF A MODIFIED ANDERSEN BACTERIAL AEROSOL SAMPLER. Appl Microbiol. 1964 Jan;12:37–43. doi: 10.1128/am.12.1.37-43.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. NOBLE W. C., LIDWELL O. M., KINGSTON D. THE SIZE DISTRIBUTION OF AIRBORNE PARTICLES CARRYING MICRO-ORGANISMS. J Hyg (Lond) 1963 Dec;61:385–391. doi: 10.1017/s0022172400020994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rotter M., Koller W. Sammlung von Luftkeimen mit Gelatine-Filtern. Zentralbl Bakteriol Orig B. 1973 May;157(2):257–270. [PubMed] [Google Scholar]
  13. Rylander R., Andersson K., Belin L., Berglund G., Bergström R., Hanson L., Lundholm M., Mattsby I. Studies on humans exposed to airborne sewage sludge. Schweiz Med Wochenschr. 1977 Feb 12;107(6):182–184. [PubMed] [Google Scholar]
  14. Rylander R., Lundholm M. Bacterial contamination of cotton and cotton dust and effects on the lung. Br J Ind Med. 1978 Aug;35(3):204–207. doi: 10.1136/oem.35.3.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rylander R. Pulmonary defence mechanisms to airborne bacteria. Acta Physiol Scand Suppl. 1968;306:1–89. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES