Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1982 Jul;44(1):246–249. doi: 10.1128/aem.44.1.246-249.1982

Plasmid Involvement in Parathion Hydrolysis by Pseudomonas diminuta

Cüneyt M Serdar 1, David T Gibson 1, Douglas M Munnecke 1,, John H Lancaster 1
PMCID: PMC241997  PMID: 16346063

Abstract

An organism identified as Pseudomonas diminuta was found to hydrolyze parathion. Cells grown for 48 h contained 3,400 U of parathion hydrolase activity per liter of broth. Expression of enzymatic activity was lost at a high frequency (9 to 12%) after treatment with mitomycin C. Hydrolase-negative derivatives were missing a plasmid present in the wild-type organism. The molecular mass of this plasmid (pCS1), as determined by electron microscopy, was about 44 × 106 daltons.

Full text

PDF
246

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown P. R., Clarke P. H. Amino acid substitution in an amidase produced by an acetanilide-utilizing mutant of Pseudomonas aeruginosa. J Gen Microbiol. 1972 Apr;70(2):287–288. doi: 10.1099/00221287-70-2-287. [DOI] [PubMed] [Google Scholar]
  2. Cook A. M., Daughton C. G., Alexander M. Phosphorus-containing pesticide breakdown products: quantitative utilization as phosphorus sources by bacteria. Appl Environ Microbiol. 1978 Nov;36(5):668–672. doi: 10.1128/aem.36.5.668-672.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Don R. H., Pemberton J. M. Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol. 1981 Feb;145(2):681–686. doi: 10.1128/jb.145.2.681-686.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dunn N. W., Gunsalus I. C. Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol. 1973 Jun;114(3):974–979. doi: 10.1128/jb.114.3.974-979.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fisher H. W., Williams R. C. Electron microscopic visualization of nucleic acids and of their complexes with proteins. Annu Rev Biochem. 1979;48:649–679. doi: 10.1146/annurev.bi.48.070179.003245. [DOI] [PubMed] [Google Scholar]
  6. Hansen J. B., Olsen R. H. Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5. J Bacteriol. 1978 Jul;135(1):227–238. doi: 10.1128/jb.135.1.227-238.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Humphreys G. O., Willshaw G. A., Anderson E. S. A simple method for the preparation of large quantities of pure plasmid DNA. Biochim Biophys Acta. 1975 Apr 2;383(4):457–463. doi: 10.1016/0005-2787(75)90318-4. [DOI] [PubMed] [Google Scholar]
  8. Johnston J. B., Gunsalus I. C. Isolation of metabolic plasmid DNA from Pseudomonas putida. Biochem Biophys Res Commun. 1977 Mar 7;75(1):13–19. doi: 10.1016/0006-291x(77)91282-7. [DOI] [PubMed] [Google Scholar]
  9. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  10. Laveglia J., Dahm P. A. Degradation of organophosphorus and carbamate insecticides in the soil and by soil microorganisms. Annu Rev Entomol. 1977;22:483–513. doi: 10.1146/annurev.en.22.010177.002411. [DOI] [PubMed] [Google Scholar]
  11. Meyers J. A., Sanchez D., Elwell L. P., Falkow S. Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. J Bacteriol. 1976 Sep;127(3):1529–1537. doi: 10.1128/jb.127.3.1529-1537.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Munnecke D. M. Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Appl Environ Microbiol. 1976 Jul;32(1):7–13. doi: 10.1128/aem.32.1.7-13.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Munnecke D. M., Hsieh D. P. Microbial decontamination of parathion and p-nitrophenol in aqueous media. Appl Microbiol. 1974 Aug;28(2):212–217. doi: 10.1128/am.28.2.212-217.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Munnecke D. M., Hsieh D. P. Pathways of microbial metabolism of parathion. Appl Environ Microbiol. 1976 Jan;31(1):63–69. doi: 10.1128/aem.31.1.63-69.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Novick R. P., Clowes R. C., Cohen S. N., Curtiss R., 3rd, Datta N., Falkow S. Uniform nomenclature for bacterial plasmids: a proposal. Bacteriol Rev. 1976 Mar;40(1):168–189. doi: 10.1128/br.40.1.168-189.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pemberton J. M., Fisher P. R. 2,4-D plasmids and persistence. Nature. 1977 Aug 25;268(5622):732–733. doi: 10.1038/268732a0. [DOI] [PubMed] [Google Scholar]
  17. SIMPSON J. R., EVANS W. C. The metabolism of nitrophenols by certain bacteria. Biochem J. 1953 Jul 17;55(320TH):xxiv–xxiv. [PubMed] [Google Scholar]
  18. Spain J. C., Wyss O., Gibson D. T. Enzymatic oxidation of p-nitrophenol. Biochem Biophys Res Commun. 1979 May 28;88(2):634–641. doi: 10.1016/0006-291x(79)92095-3. [DOI] [PubMed] [Google Scholar]
  19. Zech R., Wigand K. D. Organophosphate-detoxicating enzymes in E. coli. Gelfiltration and isoelectric focusing of DFPase, paraoxonase and unspecific phosphohydrolases. Experientia. 1975 Feb 15;31(2):157–158. doi: 10.1007/BF01990678. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES