Abstract
The bacteriology and heterotrophic activity of a stream and of nearby groundwater in Marmot Basin, Alberta, Canada, were studied. Acridine orange direct counts indicated that bacterial populations in the groundwater were greater than in the stream. Bacteria that were isolated from the groundwater were similar to species associated with soils. Utilization of labile dissolved organic material as measured by the heterotrophic potential technique with glutamic acid, phenylalanine, and glycolic acid as substrates was generally greater in the groundwater. In addition, specific activity indices for the populations suggested greater metabolic activity per bacterium in the groundwater. 14C-labeled lignocellulose, preferentially labeled in the lignin fraction by feeding Picea engelmannii [14C]phenylalanine, was mineralized by microorganisms in both the groundwater and the stream, but no more than 4% of the added radioactivity was lost as 14CO2 within 960 h. Up to 20% of [3'-14C]cinnamic acid was mineralized by microorganisms in both environments within 500 h. Both microbial populations appear to influence the levels of labile and recalcitrant dissolved organic material in mountain streams.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Crawford D. L., Crawford R. L. Microbial degradation of lignocellulose: the lignin component. Appl Environ Microbiol. 1976 May;31(5):714–717. doi: 10.1128/aem.31.5.714-717.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford D. L., Crawford R. L., Pometto A. L. Preparation of specifically labeled C-(lignin)- and C-(cellulose)-lignocelluloses and their decomposition by the microflora of soil. Appl Environ Microbiol. 1977 Jun;33(6):1247–1251. doi: 10.1128/aem.33.6.1247-1251.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford D. L., Floyd S., Pometto A. L., 3rd, Crawford R. L. Degradation of natural and Kraft lignins by the microflora of soil and water. Can J Microbiol. 1977 Apr;23(4):434–440. doi: 10.1139/m77-064. [DOI] [PubMed] [Google Scholar]
- Federle T. W., Vestal J. R. Lignocellulose mineralization by arctic lake sediments in response to nutrient manipulation. Appl Environ Microbiol. 1980 Jul;40(1):32–39. doi: 10.1128/aem.40.1.32-39.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths R. P., Hayasaka S. S., McNamara T. M., Morita R. Y. Relative microbial activity and bacterial concentrations in water and sediment samples taken in the Beaufort Sea. Can J Microbiol. 1978 Oct;24(10):1217–1226. doi: 10.1139/m78-196. [DOI] [PubMed] [Google Scholar]
- Haack T. K., McFeters G. A. Microbial dynamics of an epilithic mat community in a high alpine stream. Appl Environ Microbiol. 1982 Mar;43(3):702–707. doi: 10.1128/aem.43.3.702-707.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehmicke L. G., Williams R. T., Crawford R. L. 14C-most-probable-number method for enumeration of active heterotrophic microorganisms in natural waters. Appl Environ Microbiol. 1979 Oct;38(4):644–649. doi: 10.1128/aem.38.4.644-649.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maccubbin A. E., Hodson R. E. Mineralization of detrital lignocelluloses by salt marsh sediment microflora. Appl Environ Microbiol. 1980 Oct;40(4):735–740. doi: 10.1128/aem.40.4.735-740.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Odier E., Janin G., Monties B. Poplar lignin decomposition by gram-negative aerobic bacteria. Appl Environ Microbiol. 1981 Feb;41(2):337–341. doi: 10.1128/aem.41.2.337-341.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
- Trojanowski J., Haider K., Sundman V. Decomposition of 14C-labelled lignin and phenols by a Nocardia sp. Arch Microbiol. 1977 Aug 26;114(2):149–153. doi: 10.1007/BF00410776. [DOI] [PubMed] [Google Scholar]
- Wright R. T. Measurement and significance of specific activity in the heterotrophic bacteria of natural waters. Appl Environ Microbiol. 1978 Aug;36(2):297–305. doi: 10.1128/aem.36.2.297-305.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyndham R. C., Costerton J. W. Heterotrophic potentials and hydrocarbon biodegradation potentials of sediment microorganisms within the athabasca oil sands deposit. Appl Environ Microbiol. 1981 Mar;41(3):783–790. doi: 10.1128/aem.41.3.783-790.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]