Abstract
Differential carbohydrate media and anaerobic replica plating techniques were used to assess the degrees of diurnal variations in the direct and viable cell counts as well as the carbohydrate-specific subgroups within the mixed rumen bacterial populations in cattle fed maintenance (metabolizable energy) levels of either a high-forage or a high-concentrate diet once daily. The rumen was sampled at 1 h before feeding and 2, 4, 8, 12, and 16 h after feeding, and selected microbiological parameters of the isolated bacterial populations were assessed. Corresponding samples of ruminal fluid were assayed for fermentation acids, carbohydrate, ammonia, and pH changes. The data showed that regardless of diet, total bacterial numbers remained fairly constant throughout the day. The number of viable bacteria declined 40 to 60% after feeding and then increased to a maximum at 16 h postfeeding. Changes occurred in the carbohydrate-specific subgroups within the bacterial populations, and some of the changes were consistent with a predicted scheme of ruminal feedstuff carbohydrate fermentation. Regardless of diet, however, soluble-carbohydrate-utilizing bacteria predominated at all times. Xylan-xylose and pectin subgroups respectively comprised about one-half and one-third of the population when the high-forage diet was given. These subgroups, along with the cellulolytics, constituted lesser proportions of the population when the high-concentrate diet was given. The cellulolytic subgroup was the least numerous of all subgroups regardless of diet but followed a diurnal pattern similar to that predicted for cellulose fermentation. There were few diurnal variations or differences in bacterial cell compositions and ruminal fluid parameters between diets. The observed similarities and dissimilarities of the rumen bacterial populations obtained when the two diets were given are discussed. The data are consistent with the versatility and constancy of the rumen as a stable, mature microbial system under the specific low-level feeding regimens used.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRYANT M. P. Bacterial species of the rumen. Bacteriol Rev. 1959 Sep;23(3):125–153. doi: 10.1128/br.23.3.125-153.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauchop T. Rumen anaerobic fungi of cattle and sheep. Appl Environ Microbiol. 1979 Jul;38(1):148–158. doi: 10.1128/aem.38.1.148-158.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryant M. P. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr. 1972 Dec;25(12):1324–1328. doi: 10.1093/ajcn/25.12.1324. [DOI] [PubMed] [Google Scholar]
- Bryant M. P., Robinson I. M. Effects of diet, time after feeding, and position sampled on numbers of viable bacteria in the bovine rumen. J Dairy Sci. 1968 Dec;51(12):1950–1955. doi: 10.3168/jds.S0022-0302(68)87320-5. [DOI] [PubMed] [Google Scholar]
- CARROLL E. J., HUNGATE R. E. The magnitude of the microbial fermentation in the bovine rumen. Appl Microbiol. 1954 Jul;2(4):205–214. doi: 10.1128/am.2.4.205-214.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANEY A. L., MARBACH E. P. Modified reagents for determination of urea and ammonia. Clin Chem. 1962 Apr;8:130–132. [PubMed] [Google Scholar]
- Czerkawski J. W. Chemical composition of microbial matter in the rumen. J Sci Food Agric. 1976 Jul;27(7):621–632. doi: 10.1002/jsfa.2740270707. [DOI] [PubMed] [Google Scholar]
- DAWES E. A., RIBBONS D. W. The endogenous metabolism of microorganisms. Annu Rev Microbiol. 1962;16:241–264. doi: 10.1146/annurev.mi.16.100162.001325. [DOI] [PubMed] [Google Scholar]
- Dehority B. A., Grubb J. A. Effect of short-term chilling of rumen contents on viable bacterial numbers. Appl Environ Microbiol. 1980 Feb;39(2):376–381. doi: 10.1128/aem.39.2.376-381.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EL-SHAZLY K., HUNGATE R. E. FERMENTATION CAPACITY AS A MEASURE OF NET GROWTH OF RUMEN MICROORGANISMS. Appl Microbiol. 1965 Jan;13:62–69. doi: 10.1128/am.13.1.62-69.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grubb J. A., Dehority B. A. Effects of an abrupt change in ration from all roughage to high concentrate upon rumen microbial numbers in sheep. Appl Microbiol. 1975 Sep;30(3):404–412. doi: 10.1128/am.30.3.404-412.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUNGATE R. E. The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev. 1950 Mar;14(1):1–49. doi: 10.1128/br.14.1.1-49.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hespell R. B., Bryant M. P. Efficiency of rumen microbial growth: influence of some theoretical and experimental factors of YATP. J Anim Sci. 1979 Dec;49(6):1640–1659. doi: 10.2527/jas1979.4961640x. [DOI] [PubMed] [Google Scholar]
- Hespell R. B. Efficiency of growth by ruminal bacteria. Fed Proc. 1979 Dec;38(13):2707–2712. [PubMed] [Google Scholar]
- Hoogenraad N. J., Hird F. J. The chemical composition of rumen bacteria and cell walls from rumen bacteria. Br J Nutr. 1970 Mar;24(1):119–127. doi: 10.1079/bjn19700015. [DOI] [PubMed] [Google Scholar]
- Johnson R. R. Influence of carbohydrate solubility on non-protein nitrogen utilization in the ruminant. J Anim Sci. 1976 Jul;43(1):184–191. doi: 10.2527/jas1976.431184x. [DOI] [PubMed] [Google Scholar]
- LAGOWSKI J. M., SELL H. M., HUFFMAN C. F., DUNCAN C. W. The carbohydrates in alfalfa Medicago sativa. I. General composition, identification of a nonreducing sugar and investigation of the pectic substances. Arch Biochem Biophys. 1958 Aug;76(2):306–316. doi: 10.1016/0003-9861(58)90156-5. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Latham M. J., Sharpe M. E., Sutton J. D. The microbial flora of the rumen of cows fed hay and high cereal rations and its relationship to the rumen fermentation. J Appl Bacteriol. 1971 Jun;34(2):425–434. doi: 10.1111/j.1365-2672.1971.tb02302.x. [DOI] [PubMed] [Google Scholar]
- Leedle J. A., Hespell R. B. Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacterial populations. Appl Environ Microbiol. 1980 Apr;39(4):709–719. doi: 10.1128/aem.39.4.709-719.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackie R. I., Gilchrist F. M. Changes in Lactate-Producing and Lactate-Utilizing Bacteria in Relation to pH in the Rumen of Sheep During Stepwise Adaptation to a High-Concentrate Diet. Appl Environ Microbiol. 1979 Sep;38(3):422–430. doi: 10.1128/aem.38.3.422-430.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mertens D. R. Dietary fiber components: relationship to the rate and extent of ruminal digestion. Fed Proc. 1977 Feb;36(2):187–192. [PubMed] [Google Scholar]
- POSTGATE J. R., HUNTER J. R. ACCELERATED DEATH OF AEROBACTER AEROGENES STARVED IN THE PRESENCE OF GROWTH-LIMITING SUBSTRATES. J Gen Microbiol. 1964 Mar;34:459–473. doi: 10.1099/00221287-34-3-459. [DOI] [PubMed] [Google Scholar]
- Rumsey T. S., Putnam P. A., Bond J., Oltjen R. R. Influence of level and type of diet on ruminal pH and VFA, respiratory rate and EKG patterns of steers. J Anim Sci. 1970 Sep;31(3):608–616. doi: 10.2527/jas1970.313608x. [DOI] [PubMed] [Google Scholar]
- Russell J. B., Sharp W. M., Baldwin R. L. The effect of pH on maximum bacterial growth rate and its possible role as a determinant of bacterial competition in the rumen. J Anim Sci. 1979 Feb;48(2):251–255. doi: 10.2527/jas1979.482251x. [DOI] [PubMed] [Google Scholar]
- SCHAECHTER M., MAALOE O., KJELDGAARD N. O. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol. 1958 Dec;19(3):592–606. doi: 10.1099/00221287-19-3-592. [DOI] [PubMed] [Google Scholar]
- Salanitro J. P., Muirhead P. A. Quantitative method for the gas chromatographic analysis of short-chain monocarboxylic and dicarboxylic acids in fermentation media. Appl Microbiol. 1975 Mar;29(3):374–381. doi: 10.1128/am.29.3.374-381.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart C. S. Factors affecting the cellulolytic activity of rumen contents. Appl Environ Microbiol. 1977 Mar;33(3):497–502. doi: 10.1128/aem.33.3.497-502.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van der Walt J. G. Volatile fatty acid metabolism in sheep. 3. Diurnal variation in the contribution of ruminal propionic acid production to the whole body glucose turnover of merino sheep fed lucerne hay twice daily. Onderstepoort J Vet Res. 1978 Jun;45(2):125–131. [PubMed] [Google Scholar]
- WARNER A. C. Enumeration of rumen micro-organisms. J Gen Microbiol. 1962 Apr;28:119–128. doi: 10.1099/00221287-28-1-119. [DOI] [PubMed] [Google Scholar]
- WARNER A. C. Some factors influencing the rumen microbial population. J Gen Microbiol. 1962 Apr;28:129–146. doi: 10.1099/00221287-28-1-129. [DOI] [PubMed] [Google Scholar]
- Warner A. C. Diurnal changes in the concentrations of micro-organisms in the rumens of sheep fed limited diets once daily. J Gen Microbiol. 1966 Nov;45(2):213–235. doi: 10.1099/00221287-45-2-213. [DOI] [PubMed] [Google Scholar]
- Wohlt J. E., Clark J. H., Blaisdell F. S. Effect of sampling location, time, and method of concentration of ammonia nitrogen in rumen fluid. J Dairy Sci. 1976 Mar;59(3):459–464. doi: 10.3168/jds.S0022-0302(76)84227-0. [DOI] [PubMed] [Google Scholar]
- Wolstrup J., Jensen V., Jensen K. The microflora and concentrations of volatile fatty acids in the rumen of cattle fed on single component rations. Acta Vet Scand. 1974;15(2):244–255. doi: 10.1186/BF03547485. [DOI] [PMC free article] [PubMed] [Google Scholar]