Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1982 Oct;44(4):929–937. doi: 10.1128/aem.44.4.929-937.1982

Role of Thin Fimbriae in Adherence and Growth of Acinetobacter calcoaceticus RAG-1 on Hexadecane

Mel Rosenberg 1, Edward A Bayer 1,, Jacob Delarea 1, Eugene Rosenberg 1
PMCID: PMC242119  PMID: 16346118

Abstract

Acinetobacter calcoaceticus RAG-1, a hydrocarbon-degrading bacterium which adheres avidly to hydrocarbons and other hydrophobic surfaces, possesses numerous thin fimbriae (ca. 3.5-nm diameter) on the cell surface. MR-481, a nonadherent mutant of RAG-1 which is unable to grow on hexadecane under conditions of limited emulsification and low initial cell density, lacks these fimbriae. Prolonged incubation of MR-481 in hexadecane medium enriched for partial adherence revertants. The reappearance of thin fimbriae was observed in all such revertant strains. RAG-1 cells and partial revertant strains were agglutinated in the presence of antibody, whereas MR-481 cells were not. Another mutant, AB15, which was previously isolated on the basis of its nonagglutinability in the presence of antibody, also lacked thin fimbriae and was conditionally nonadherent. Furthermore, strain AB15 was unable to grow on hexadecane medium. Adherence of RAG-1 cells to hexadecane was considerably reduced after shearing treatment. The material removed from the cell surface by shearing of RAG-1 and the partial revertant strains yielded a single antigenic band in RAG-1 and partial revertant strains, as observed by crossed immunoelectrophoresis. This band was absent in both fimbriae-less mutants, MR-481 and AB15. The data demonstrate that the thin fimbriae of RAG-1 (i) are a major factor in adherence to polystyrene and hydrocarbon, (ii) may be crucial in enabling growth of cells on hexadecane, and (iii) constitute the major cell surface agglutinogen.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayer E. A., Rosenberg E., Gutnick D. The isolation of cell surface mutants of Acinetobacter calcoaceticus RAG-1. J Gen Microbiol. 1981 Dec;127(2):295–300. doi: 10.1099/00221287-127-2-295. [DOI] [PubMed] [Google Scholar]
  2. Brinton C. C., Jr The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci. 1965 Jun;27(8):1003–1054. doi: 10.1111/j.2164-0947.1965.tb02342.x. [DOI] [PubMed] [Google Scholar]
  3. Eshdat Y., Silverblatt F. J., Sharon N. Dissociation and reassembly of Escherichia coli type 1 pili. J Bacteriol. 1981 Oct;148(1):308–314. doi: 10.1128/jb.148.1.308-314.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Henrichsen J., Blom J. Correlation between twitching motility and possession of polar fimbriae in Acinetobacter calcoaceticus. Acta Pathol Microbiol Scand B. 1975 Apr;83(2):103–115. doi: 10.1111/j.1699-0463.1975.tb00078.x. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Reisfeld A., Rosenberg E., Gutnick D. Microbial degradation of crude oil: factors affecting the dispersion in sea water by mixed and pure cultures. Appl Microbiol. 1972 Sep;24(3):363–368. doi: 10.1128/am.24.3.363-368.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rosenberg E., Zuckerberg A., Rubinovitz C., Gutnick D. L. Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol. 1979 Mar;37(3):402–408. doi: 10.1128/aem.37.3.402-408.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rosenberg M. Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity. Appl Environ Microbiol. 1981 Aug;42(2):375–377. doi: 10.1128/aem.42.2.375-377.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rosenberg M., Perry A., Bayer E. A., Gutnick D. L., Rosenberg E., Ofek I. Adherence of Acinetobacter calcoaceticus RAG-1 to human epithelial cells and to hexadecane. Infect Immun. 1981 Jul;33(1):29–33. doi: 10.1128/iai.33.1.29-33.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rosenberg M., Rosenberg E. Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. J Bacteriol. 1981 Oct;148(1):51–57. doi: 10.1128/jb.148.1.51-57.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Smyth C. J., Jonsson P., Olsson E., Soderlind O., Rosengren J., Hjertén S., Wadström T. Differences in hydrophobic surface characteristics of porcine enteropathogenic Escherichia coli with or without K88 antigen as revealed by hydrophobic interaction chromatography. Infect Immun. 1978 Nov;22(2):462–472. doi: 10.1128/iai.22.2.462-472.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Weeke B. Crossed immunoelectrophoresis. Scand J Immunol Suppl. 1973;1:47–56. doi: 10.1111/j.1365-3083.1973.tb03778.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES