Abstract
We isolated 400 aerobic heterotrophic bacteria from the sediment of unpolluted and polluted sites in a fast-flowing south Wales river. Isolates were subjected to taxonomic tests and screened for the presence of plasmid DNA by alkaline lysis and agarose gel techniques. There were no significant differences between sites in either the total percentage of isolates containing plasmids (unpolluted site, 9.4%; polluted site, 15%) or in the percentage of non-Pseudomonas-like isolates containing plasmids (unpolluted site, 15%; polluted site, 10%). There were significantly more Pseudomonas-like isolates with plasmids at the polluted site than at the unpolluted site (unpolluted site, 7%; polluted site, 18%). This presumably reflected a response of the nutritionally versatile Pseudomonas-like isolates to conditions at that site. The majority (86%) of the plasmids detected had molecular masses between 35 and 312 megadaltons. These plasmids were large enough to carry genes for conjugal transfer, suggesting the possibility of such transfer in this environment.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Hada H. S., Sizemore R. K. Incidence of Plasmids in Marine Vibrio spp. Isolated from an Oil Field in the Northwestern Gulf of Mexico. Appl Environ Microbiol. 1981 Jan;41(1):199–202. doi: 10.1128/aem.41.1.199-202.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen J. B., Olsen R. H. Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5. J Bacteriol. 1978 Jul;135(1):227–238. doi: 10.1128/jb.135.1.227-238.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones J. G. Studies on freshwater bacteria: effect of medium composition and method on estimates of bacterial population. J Appl Bacteriol. 1970 Dec;33(4):679–686. doi: 10.1111/j.1365-2672.1970.tb02250.x. [DOI] [PubMed] [Google Scholar]
- KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
- Pike E. B., Carrington E. G., Ashburner P. A. An evaluation of procedures for enumerating bacteria in activated sludge. J Appl Bacteriol. 1972 Jun;35(2):309–321. doi: 10.1111/j.1365-2672.1972.tb03703.x. [DOI] [PubMed] [Google Scholar]
- Smith H. W. Incidence of river water of Escherichia coli containing R factors. Nature. 1970 Dec 26;228(5278):1286–1288. doi: 10.1038/2281286a0. [DOI] [PubMed] [Google Scholar]
- Wheatcroft R., Williams P. A. Rapid methods for the study of both stable and unstable plasmids in Pseudomonas. J Gen Microbiol. 1981 Jun;124(2):433–437. doi: 10.1099/00221287-124-2-433. [DOI] [PubMed] [Google Scholar]
- Willetts N. The genetics of transmissible plasmids. Annu Rev Genet. 1972;6:257–268. doi: 10.1146/annurev.ge.06.120172.001353. [DOI] [PubMed] [Google Scholar]