Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1982 Nov;44(5):1110–1117. doi: 10.1128/aem.44.5.1110-1117.1982

Membrane lipid alterations and thermal stress in Salmonella typhimurium 7136.

R I Tomlins, T R Watkins, R J Gray
PMCID: PMC242156  PMID: 6758697

Abstract

Salmonella typhimurium ATCC 7136 exhibited major changes in lipid composition when grown in the presence of either 0.15% sodium deoxycholate or 0.15% sodium benzoate. These lipophilic compounds had directly opposing effects on the lipid profile of the organism. The saturated/unsaturated ratio was markedly elevated in benzoate-grown cells. On the other hand, it was depressed by an even greater margin from the control after growth in the presence of deoxycholate. Adjustments in the phospholipid content of the cells were also recorded. Phosphatidylethanolamines decreased by 28 and 50% in the deoxycholate- and benzoate-grown cells, respectively. Compensatory increases in phosphatidylglycerols of 87.5 and 175% occurred, along with increases in cardiolipins of 12- and 22-fold, respectively. Deoxycholate or benzoate supplementation also altered the relative distribution of neutral lipids; again, benzoate stimulated the greater change. Compositional changes were accompanied in the organism by increased heat sensitivity, but the effect on the susceptibility of S. typhimurium to injury varied with the physical properties of the supplement used.

Full text

PDF
1110

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Beuchat L. R., Worthington R. E. Relationships between heat resistance and phospholipid fatty acid composition of Vibrio parahaemolyticus. Appl Environ Microbiol. 1976 Mar;31(3):389–394. doi: 10.1128/aem.31.3.389-394.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brewer D. G., Martin S. E., Ordal Z. J. Beneficial effects of catalase or pyruvate in a most-probable-number technique for the detection of Staphylococcus aureus. Appl Environ Microbiol. 1977 Dec;34(6):797–800. doi: 10.1128/aem.34.6.797-800.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fulco A. J. Metabolic alterations of fatty acids. Annu Rev Biochem. 1974;43(0):215–241. doi: 10.1146/annurev.bi.43.070174.001243. [DOI] [PubMed] [Google Scholar]
  5. Grau F. H. Significance of the inactivation of transport in thermal death of Escherichia coli. Appl Environ Microbiol. 1978 Aug;36(2):230–236. doi: 10.1128/aem.36.2.230-236.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gray R. J., Jackson H. Growth and macromolecular composition of a psychrophile, Micrococcus cryophilus, at elevated temperatures. Antonie Van Leeuwenhoek. 1973;39(3):497–504. doi: 10.1007/BF02578893. [DOI] [PubMed] [Google Scholar]
  7. Haest C. W., de Gier J., van Deenen L. L. Changes in the chemical and the barrier properties of the membrane lipids of E. coli by variation of the temperature of growth. Chem Phys Lipids. 1969 Dec;3(4):413–417. doi: 10.1016/0009-3084(69)90048-6. [DOI] [PubMed] [Google Scholar]
  8. Hansen E. W., Skadhauge K. The influence of growth temperature on the thermal resistance of E. coli. Dan Tidsskr Farm. 1971;45(1):24–28. [PubMed] [Google Scholar]
  9. Henry S. A., Keith A. D. Saturated fatty acid requirer of Neurospora crassa. J Bacteriol. 1971 Apr;106(1):174–182. doi: 10.1128/jb.106.1.174-182.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herrero A. A., Gomez R. F. Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol. 1980 Sep;40(3):571–577. doi: 10.1128/aem.40.3.571-577.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hitchener B. J., Egan A. F. Outer-membrane damage in sublethally heated Escherichia coli K-12. Can J Microbiol. 1977 Mar;23(3):311–318. doi: 10.1139/m77-046. [DOI] [PubMed] [Google Scholar]
  12. Hoover D. G., Gray R. J. Function of cell wall teichoic acid in thermally injured Staphylococcus aureus. J Bacteriol. 1977 Aug;131(2):477–485. doi: 10.1128/jb.131.2.477-485.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hurst A., Hughes A., Beare-Rogers J. L., Collins-Thompson D. L. Pysiological studies on the recovery of salt tolerance by Staphylococcus aureus after sublethal heating. J Bacteriol. 1973 Nov;116(2):901–907. doi: 10.1128/jb.116.2.901-907.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ingram L. O. Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl Environ Microbiol. 1977 May;33(5):1233–1236. doi: 10.1128/aem.33.5.1233-1236.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pellon J. R., Ulmer K. M., Gomez R. F. Heat damage to the chromosome of Escherichia coli K-12. Appl Environ Microbiol. 1980 Aug;40(2):358–364. doi: 10.1128/aem.40.2.358-364.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Razin S. Cholesterol incorporation into bacterial membranes. J Bacteriol. 1975 Oct;124(1):570–572. doi: 10.1128/jb.124.1.570-572.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schreier-Muccillo S., Marsh D., Dugas H., Schneider H., Smith C. P. A spin probe study of the influence of cholesterol on motion and orientation of phospholipids in oriented multibilayers and vesicles. Chem Phys Lipids. 1973 Jan;10(1):11–27. doi: 10.1016/0009-3084(73)90037-6. [DOI] [PubMed] [Google Scholar]
  19. Silbert D. F., Ladenson R. C., Honegger J. L. The unsaturated fatty acid requirement in Escherichia coli. Temperature dependence and total replacement by branched-chain fatty acids. Biochim Biophys Acta. 1973 Jul 6;311(3):349–361. doi: 10.1016/0005-2736(73)90315-5. [DOI] [PubMed] [Google Scholar]
  20. Sinensky M. Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1974 Feb;71(2):522–525. doi: 10.1073/pnas.71.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tomlins R. I., Ordal Z. J. Requirements of Salmonella typhimurium for recovery from thermal injury. J Bacteriol. 1971 Feb;105(2):512–518. doi: 10.1128/jb.105.2.512-518.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tomlins R. I., Pierson M. D., Ordal Z. J. Effect of thermal injury on the TCA cycle enzymes of Staphylococcus aureus MF 31 and Salmonella typhimurium 7136. Can J Microbiol. 1971 Jun;17(6):759–765. doi: 10.1139/m71-121. [DOI] [PubMed] [Google Scholar]
  23. Tomlins R. I., Vaaler G. L., Ordal Z. J. Lipid biosynthesis during the recovery of Salmonella typhimurium from thermal injury. Can J Microbiol. 1972 Jul;18(7):1015–1021. doi: 10.1139/m72-158. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES