Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1982 Nov;44(5):1159–1165. doi: 10.1128/aem.44.5.1159-1165.1982

Reactivity of aflatoxin B2a antibody with aflatoxin B1-modified DNA and related metabolites.

J J Pestka, Y K Li, F S Chu
PMCID: PMC242163  PMID: 6817711

Abstract

Aflatoxin B2a (AFB2a) antiserum has been previously used in an enzyme-linked immunosorbent assay (ELISA) for the quantitation of AFB1 and AFB2a. The present investigation examined the reactivity of the antiserum toward those adducts and metabolites of AFB1 believed to play a major role in aflatoxicosis and carcinogenesis. 2,3-Dihydro-2-(N7-guanyl)-3-hydroxyaflatoxin B1 (AFB1-N7-Gua), the putative 2,3-(N5-formyl-2-2', 5',6'-triamino-4-oxo-N5-pyrimidyl)-3-hydroxyaflatoxin B1 (AFB1-FAPyr), 2,3-dihydro-2,3-dihydroxyaflatoxin B1 (AFB1-diol), AFB1-N7-Gua-modified DNA, and AFB1-FAPyr-modified DNA were prepared by in vitro incubation or chemical methods and subjected to competitive AFB2a ELISA. The antiserum showed significant reactivity with all five compounds, indicating that it had a high degree of specificity for both the cyclopentenone and the methoxy group of the parent aflatoxin molecule. Sensitivity for AFB-N7-Gua-modified DNA, AFB1-FAPyr-modified DNA, and AFB1-diol by the ELISA method was 0.1 pmol per assay. To test the applicability of immunological detection of covalent binding of AFB1 to DNA, the ELISA was compared with a conventional radioisotopic assay in two in vitro studies. The results showed that estimates of the kinetics and substrate dependence of covalent binding to calf thymus DNA in rat microsomal incubation mixtures by both methods were comparable. The broad specificity AFB2a antibody might be of considerable value in the detection of AFB1 macromolecular adducts and related metabolites in epidemiological investigations or in the diagnosis of aflatoxicosis.

Full text

PDF
1159

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashoor S. H., Chu F. S. Interaction of aflatoxin B2a with amino acids and proteins. Biochem Pharmacol. 1975 Oct 1;24(19):1799–1805. doi: 10.1016/0006-2952(75)90460-8. [DOI] [PubMed] [Google Scholar]
  2. Bennett R. A., Essigmann J. M., Wogan G. N. Excretion of an aflatoxin-guanine adduct in the urine of aflatoxin B1-treated rats. Cancer Res. 1981 Feb;41(2):650–654. [PubMed] [Google Scholar]
  3. Campbell T. C., Hayes J. R. The role of aflatoxin metabolism in its toxic lesion. Toxicol Appl Pharmacol. 1976 Feb;35(2):199–222. doi: 10.1016/0041-008x(76)90282-9. [DOI] [PubMed] [Google Scholar]
  4. Chu F. S. Chromatography of crude aflatoxins on adsorbosil-5. J Assoc Off Anal Chem. 1971 Nov;54(6):1304–1306. [PubMed] [Google Scholar]
  5. Chu F. S., Ueno I. Production of antibody against aflatoxin B1. Appl Environ Microbiol. 1977 May;33(5):1125–1128. doi: 10.1128/aem.33.5.1125-1128.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Croy R. G., Wogan G. N. Temporal patterns of covalent DNA adducts in rat liver after single and multiple doses of aflatoxin B1. Cancer Res. 1981 Jan;41(1):197–203. [PubMed] [Google Scholar]
  7. Essigmann J. M., Croy R. G., Nadzan A. M., Busby W. F., Jr, Reinhold V. N., Büchi G., Wogan G. N. Structural identification of the major DNA adduct formed by aflatoxin B1 in vitro. Proc Natl Acad Sci U S A. 1977 May;74(5):1870–1874. doi: 10.1073/pnas.74.5.1870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gaur P. K., Lau H. P., Pestka J. J., Chu F. S. Production and characterization of aflatoxin B2a antiserum. Appl Environ Microbiol. 1981 Feb;41(2):478–482. doi: 10.1128/aem.41.2.478-482.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haugen A., Groopman J. D., Hsu I. C., Goodrich G. R., Wogan G. N., Harris C. C. Monoclonal antibody to aflatoxin B1-modified DNA detected by enzyme immunoassay. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4124–4127. doi: 10.1073/pnas.78.7.4124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hebert G. A., Pelham P. L., Pittman B. Determination of the optimal ammonium sulfate concentration for the fractionation of rabbit, sheep, horse, and goat antisera. Appl Microbiol. 1973 Jan;25(1):26–36. doi: 10.1128/am.25.1.26-36.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hsu I. C., Poirier M. C., Yuspa S. H., Grunberger D., Weinstein I. B., Yolken R. H., Harris C. C. Measurement of benzo(a)pyrene-DNA adducts by enzyme immunoassays and radioimmunoassay. Cancer Res. 1981 Mar;41(3):1091–1095. [PubMed] [Google Scholar]
  12. Hsu I. C., Poirier M. C., Yuspa S. H., Yolken R. H., Harris C. C. Ultrasensitive enzymatic radioimmunoassay (USERIA) detects femtomoles of acetylaminofluorene-DNA adducts. Carcinogenesis. 1980 May;1(5):455–458. doi: 10.1093/carcin/1.5.455. [DOI] [PubMed] [Google Scholar]
  13. Langone J. J., Van Vunakis H. Aflatoxin B; specific antibodies and their use in radioimmunoassay. J Natl Cancer Inst. 1976 Mar;56(3):591–595. doi: 10.1093/jnci/56.3.591. [DOI] [PubMed] [Google Scholar]
  14. Lawellin D. W., Grant D. W., Joyce B. K. Enzyme-linked immunosorbent analysis for aflatoxin B1. Appl Environ Microbiol. 1977 Jul;34(1):94–96. doi: 10.1128/aem.34.1.94-96.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leng M., Sage E., Fuchs R. P., Duane M. P. Antibodies to DNA modified by the carcinogen N-acetoxy-N-2-acetylaminofluorene. FEBS Lett. 1978 Aug 15;92(2):207–210. doi: 10.1016/0014-5793(78)80755-8. [DOI] [PubMed] [Google Scholar]
  16. Lin J. K., Kennan K. A., Miller E. C., Miller J. A. Reduced nicotinamide adenine dinucleotide phosphate-dependent formation of 2,3-dihydro-2,3-dihydroxyaflatoxin B1 from aflatoxin B1 by hepatic microsomes. Cancer Res. 1978 Aug;38(8):2424–2428. [PubMed] [Google Scholar]
  17. Lin J. K., Miller J. A., Miller E. C. 2,3-Dihydro-2-(guan-7-yl)-3-hydroxy-aflatoxin B1, a major acid hydrolysis product of aflatoxin B1-DNA or -ribosomal RNA adducts formed in hepatic microsome-mediated reactions and in rat liver in vivo. Cancer Res. 1977 Dec;37(12):4430–4438. [PubMed] [Google Scholar]
  18. Martin C. N., Garner R. C. Aflatoxin B -oxide generated by chemical or enzymic oxidation of aflatoxin B1 causes guanine substitution in nucleic acids. Nature. 1977 Jun 30;267(5614):863–865. doi: 10.1038/267863a0. [DOI] [PubMed] [Google Scholar]
  19. Neal G. E., Colley P. J. Some high-performance liquid-chromatographic studies of the metabolism of aflatoxins by rat liver microsomal preparations. Biochem J. 1978 Sep 15;174(3):839–851. doi: 10.1042/bj1740839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Neal G. E., Colley P. J. The formation of 2,3-dihydro-2,3-dihydroxy aflatoxin B1 by the metabolism of aflatoxin B1 in vitro by rat liver microsomes. FEBS Lett. 1979 May 15;101(2):382–386. doi: 10.1016/0014-5793(79)81049-2. [DOI] [PubMed] [Google Scholar]
  21. Neal G. E., Judah D. J., Stirpe F., Patterson D. S. The formation of 2,3-dihydroxy-2,3-dihydro-aflatoxin B1 by the metabolism of aflatoxin B1 by liver microsomes isolated from certain avian and mammalian species and the possible role of this metabolite in the acute toxicity of aflatoxin B1. Toxicol Appl Pharmacol. 1981 May;58(3):431–437. doi: 10.1016/0041-008x(81)90095-8. [DOI] [PubMed] [Google Scholar]
  22. Pestka J. J., Gaur P. K., Chu F. S. Quantitation of aflatoxin B1 and aflatoxin B1 antibody by an enzyme-linked immunosorbent microassay. Appl Environ Microbiol. 1980 Dec;40(6):1027–1031. doi: 10.1128/aem.40.6.1027-1031.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pestka J. J., Li Y., Harder W. O., Chu F. S. Comparison of radioimmunoassay and enzyme-linked immunosorbent assay for determining aflatoxin M1 in milk. J Assoc Off Anal Chem. 1981 Mar;64(2):294–301. [PubMed] [Google Scholar]
  24. Poirier M. C., Yuspa S. H., Weinstein I. B., Blobstein S. Detection of carcinogen-DNA adducts by radiommunoassay. Nature. 1977 Nov 10;270(5633):186–188. doi: 10.1038/270186a0. [DOI] [PubMed] [Google Scholar]
  25. Stark A. A. Mutagenicity and carcinogenicity of mycotoxins: DNA binding as a possible mode of action. Annu Rev Microbiol. 1980;34:235–262. doi: 10.1146/annurev.mi.34.100180.001315. [DOI] [PubMed] [Google Scholar]
  26. Swenson D. H., Miller J. A., Miller E. C. The reactivity and carcinogenicity of aflatoxin B1-2,3-dichloride, a model for the putative 2,3-oxide metabolite of aflatoxin B1. Cancer Res. 1975 Dec;35(12):3811–3823. [PubMed] [Google Scholar]
  27. Wang T. V., Cerutti P. Spontaneous reactions of aflatoxin B1 modified deoxyribonucleic acid in vitro. Biochemistry. 1980 Apr 15;19(8):1692–1698. doi: 10.1021/bi00549a027. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES