Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1982 Dec;44(6):1253–1257. doi: 10.1128/aem.44.6.1253-1257.1982

Extracellular Isoamylase Produced by the Yeast Lipomyces kononenkoae

Isabel Spencer-Martins 1
PMCID: PMC242182  PMID: 16346143

Abstract

A strain of the starch-converting yeast Lipomyces kononenkoae produced, when grown on starch, a debranching enzyme that proved to be an isoamylase (glycogen 6-glucanohydrolase; E.C. 3.2.1.68). So far, only bacteria have been found to produce extracellular isoamylases. The yeast isoamylase enhanced β-amylolysis of amylopectin and glycogen and completely hydrolyzed these substrates into maltose when combined with a β-amylase but had no action on dextran or pullulan. By isopropanol precipitation and carboxymethyl cellulose chromatography, L. kononenkoae isoamylase was partially purified from the supernatant of cultures grown on a mineral medium with soluble starch. Optimum temperature and pH for activity of the isoamylase were 30°C and 5.6. The molecular weight was around 65,000, and the pI was at pH 4.7 to 4.8. The Km (30°C, pH 5.5) for soluble starch was 9 g liter−1.

Full text

PDF
1253

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amemura A., Konishi Y., Harada T. Molecular weight of the undegraded polypeptide chain of Pseudomonas amyloderamosa isoamylase. Biochim Biophys Acta. 1980 Feb 14;611(2):390–393. doi: 10.1016/0005-2744(80)90077-7. [DOI] [PubMed] [Google Scholar]
  2. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gunja-Smith Z., Marshall J. J., Smith E. E., Whelan W. J. A glycogen-debranching enzyme from Cytophaga. FEBS Lett. 1970 Dec 28;12(2):96–100. doi: 10.1016/0014-5793(70)80572-5. [DOI] [PubMed] [Google Scholar]
  4. Gunja Z. H., Manners D. J., Maung K. Studies on carbohydrate-metabolizing enzymes. 7. Yeast isoamylase. Biochem J. 1961 Nov;81(2):392–398. doi: 10.1042/bj0810392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Harada T., Yokobayashi K., Misaki A. Formation of isoamylase by Pseudomonas. Appl Microbiol. 1968 Oct;16(10):1439–1444. doi: 10.1128/am.16.10.1439-1444.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Iurkevich V. V., Shurygina N. N. Mekhanizm vliianiia krakhmala na biosintez al'fa-amilazy Aspergillus oryzae. Prikl Biokhim Mikrobiol. 1972 Sep-Oct;8(5):515–519. [PubMed] [Google Scholar]
  7. Jeanningros R., Creuzet N., Frixon C., Cattaneo J. Proceedings: A debranching enzyme in Escherichia coli. Biochem Soc Trans. 1975;3(2):336–337. doi: 10.1042/bst0030336. [DOI] [PubMed] [Google Scholar]
  8. KJOLBERG O., MANNERS D. J. Studies on carbohydrate-metabolizing enzymes. 9. The action of isoamylase on amylose. Biochem J. 1963 Feb;86:258–262. doi: 10.1042/bj0860258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kainuma K., Kobayashi S., Harada T. Action of Pseudomonas isoamylase on various branched oligo and poly-saccharides. Carbohydr Res. 1978 Mar;61:345–357. doi: 10.1016/s0008-6215(00)84494-8. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lee E. Y., Carter J. H., Nielsen L. D., Fischer E. H. Purification and properties of yeast amylo-1,6-glucosidase--oligo-1,4 leads to 1,4-glucantransferase. Biochemistry. 1970 May 26;9(11):2347–2355. doi: 10.1021/bi00813a019. [DOI] [PubMed] [Google Scholar]
  12. MARUO B., KOBAYASHI T. Enzymic scission of the branch links of amylopectin. Nature. 1951 Apr 14;167(4250):606–607. doi: 10.1038/167606a0. [DOI] [PubMed] [Google Scholar]
  13. Marshall J. J. Inhibition of pullulanase by Schardinger dextrins. FEBS Lett. 1973 Dec 1;37(2):269–273. doi: 10.1016/0014-5793(73)80476-4. [DOI] [PubMed] [Google Scholar]
  14. Ueda S., Nanri N. Production of isoamylase by Escherichia intermedia. Appl Microbiol. 1967 May;15(3):492–496. doi: 10.1128/am.15.3.492-496.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yokobayashi K., Akai H., Sugimoto T., Hirao M., Sugimoto K., Harada T. Comparison of the kinetic parameters of Pseudomonas isoamylase and Aerobacter pullulanase. Biochim Biophys Acta. 1973 Jan 12;293(1):197–202. doi: 10.1016/0005-2744(73)90391-4. [DOI] [PubMed] [Google Scholar]
  16. Zacharius R. M., Zell T. E., Morrison J. H., Woodlock J. J. Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem. 1969 Jul;30(1):148–152. doi: 10.1016/0003-2697(69)90383-2. [DOI] [PubMed] [Google Scholar]
  17. van Uden N. Transport-limited fermentation and growth of saccharomyces cerevisiae and its competitive inhibition. Arch Mikrobiol. 1967;58(2):155–168. doi: 10.1007/BF00406676. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES