Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1983 Jan;45(1):84–90. doi: 10.1128/aem.45.1.84-90.1983

End Products of Glucose Fermentation by Brochothrix thermosphacta

Frederick H Grau 1
PMCID: PMC242234  PMID: 16346185

Abstract

Anaerobically, Brochothrix thermosphacta fermented glucose primarily to l-lactate, acetate, formate, and ethanol. The ratio of these end products varied with growth conditions. Both the presence of acetate and formate and a pH below about 6 increased l-lactate production from glucose. Small amounts of butane-2,3-diol were also produced when the pH of the culture was low (≤5.5) or when acetate was added to the growth medium. Radioactive label from [1-14C]acetate was incorporated into ethanol and l-lactate, implying reversibility of pyruvate-formate lyase. In crude extracts, the following enzymes involved in pyruvate metabolism were demonstrated: lactate dehydrogenase, phosphotransacetylase, acetate kinase, acetaldehyde dehydrogenase (coenzyme A acetylating), ethanol dehydrogenase, pH 6 acetolactate-forming enzyme, and diacetyl (acetoin) reductase. The lactate dehydrogenase did not require fructose-1,6-disphosphate or Mn2+ for activity.

Full text

PDF
84

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark D. P., Cronan J. E., Jr Acetaldehyde coenzyme A dehydrogenase of Escherichia coli. J Bacteriol. 1980 Oct;144(1):179–184. doi: 10.1128/jb.144.1.179-184.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dainty R. H., Hibbard C. M. Aerobic metabolism of Brochothrix thermosphacta growing on meat surfaces and in laboratory media. J Appl Bacteriol. 1980 Jun;48(3):387–396. doi: 10.1111/j.1365-2672.1980.tb01027.x. [DOI] [PubMed] [Google Scholar]
  3. Davidson C. M., Mobbs P., Stubbs J. M. Some morphological and physiological properties of Microbacterium thermosphactum. J Appl Bacteriol. 1968 Dec;31(4):551–559. doi: 10.1111/j.1365-2672.1968.tb00405.x. [DOI] [PubMed] [Google Scholar]
  4. Garvie E. I. Bacterial lactate dehydrogenases. Microbiol Rev. 1980 Mar;44(1):106–139. doi: 10.1128/mr.44.1.106-139.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grau F. H. Inhibition of the Anaerobic Growth of Brochothrix thermosphacta by Lactic Acid. Appl Environ Microbiol. 1980 Sep;40(3):433–436. doi: 10.1128/aem.40.3.433-436.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grau F. H. Nutritional Requirements of Microbacterium thermosphactum. Appl Environ Microbiol. 1979 Nov;38(5):818–820. doi: 10.1128/aem.38.5.818-820.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Higgins T. E., Johnson M. J. Pathways of anaerobic acetate utilization in Escherichia coli and Aerobacter cloacae. J Bacteriol. 1970 Mar;101(3):885–891. doi: 10.1128/jb.101.3.885-891.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hitchener B. J., Egan A. F., Rogers P. J. Energetics of Microbacterium thermosphactum in glucose-limited continuous culture. Appl Environ Microbiol. 1979 Jun;37(6):1047–1052. doi: 10.1128/aem.37.6.1047-1052.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keen A. R., Walker N. J. Separation of diacetyl, acetoin, and 2,3-butylene glycol by ion-exchange chromatography. Anal Biochem. 1973 Apr;52(2):475–481. doi: 10.1016/0003-2697(73)90051-1. [DOI] [PubMed] [Google Scholar]
  10. Knappe J., Blaschkowski H. P. Pyruvate formate-lyase from Escherischia coli and its activation system. Methods Enzymol. 1975;41:508–518. doi: 10.1016/s0076-6879(75)41107-7. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lamed R., Zeikus J. G. Glucose fermentation pathway of Thermoanaerobium brockii. J Bacteriol. 1980 Mar;141(3):1251–1257. doi: 10.1128/jb.141.3.1251-1257.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Larsen S. H., Stormer F. C. Diacetyl (acetoin) reductase from Aerobacter aerogenes. Kinetic mechanism and regulation by acetate of the reversible reduction of acetoin to 2,3-butanediol. Eur J Biochem. 1973 Apr 2;34(1):100–106. doi: 10.1111/j.1432-1033.1973.tb02734.x. [DOI] [PubMed] [Google Scholar]
  14. MONOD J., COHEN-BAZIRE G., COHN M. Sur la biosynthèse de la beta-galactosidase (lactase) chez Escherichia coli; la spécificité de l'induction. Biochim Biophys Acta. 1951 Nov;7(4):585–599. doi: 10.1016/0006-3002(51)90072-8. [DOI] [PubMed] [Google Scholar]
  15. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  16. Shimizu M., Suzuki T., Kameda K. Y., Abiko Y. Phosphotransacetylase of Escherichia coli B, purification and properties. Biochim Biophys Acta. 1969;191(3):550–558. doi: 10.1016/0005-2744(69)90348-9. [DOI] [PubMed] [Google Scholar]
  17. Stormer F. C. 2,3-Butanediol biosynthetic system in Aerobacter aerogenes. Methods Enzymol. 1975;41:518–532. doi: 10.1016/s0076-6879(75)41108-9. [DOI] [PubMed] [Google Scholar]
  18. Thauer R. K., Kirchniawy F. H., Jungermann K. A. Properties and function of the pyruvate-formate-lyase reaction in clostridiae. Eur J Biochem. 1972 May 23;27(2):282–290. doi: 10.1111/j.1432-1033.1972.tb01837.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES