Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1983 Jan;45(1):141–147. doi: 10.1128/aem.45.1.141-147.1983

Cooperative formation of omega-muricholic acid by intestinal microorganisms.

H Eyssen, G De Pauw, J Stragier, A Verhulst
PMCID: PMC242244  PMID: 6824314

Abstract

Three anaerobic bacteria, isolated from the ceca of rats and mice, converted, through a concerted mechanism, beta-muricholic acid, the predominant bile acid in germfree rats, into omega-muricholic acid. One isolate was a Eubacterium lentum strain; the second and third isolates were tentatively identified as atypical Fusobacterium sp. strains. The conversion of beta-muricholic acid into omega-muricholic acid proceeded in two steps: E. lentum oxidized the 6 beta-hydroxyl group of beta-muricholic acid to a 6-oxo group, which was reduced by either of the two other species to a 6 alpha-hydroxyl group, yielding omega-muricholic acid. This transformation occurred both in vitro and in gnotobiotic rats. Monoassociation of germfree rats with the E. lentum strain gave rise to an unidentified fecal bile acid, probably a derivative of beta-muricholic acid having a double bond in the side chain.

Full text

PDF
141

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arank A., Syed S. A., Kenney E. B., Freter R. Isolation of anaerobic bacteria from human gingiva and mouse cecum by means of a simplified glove box procedure. Appl Microbiol. 1969 Apr;17(4):568–576. doi: 10.1128/am.17.4.568-576.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bokkenheuser V. D., Winter J., Dehazya P., Kelly W. G. Isolation and characterization of human fecal bacteria capable of 21-dehydroxylating corticoids. Appl Environ Microbiol. 1977 Nov;34(5):571–575. doi: 10.1128/aem.34.5.571-575.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bokkenheuser V. D., Winter J., O'Rourke S., Ritchie A. E. Isolation and characterization of fecal bacteria capable of 16 alpha-dehydroxylating corticoids. Appl Environ Microbiol. 1980 Oct;40(4):803–808. doi: 10.1128/aem.40.4.803-808.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brydon W. G., Tadesse K., Eastwood M. A., Lawson M. E. The effect of dietary fibre on bile acid metabolism in rats. Br J Nutr. 1980 Jan;43(1):101–106. doi: 10.1079/bjn19800069. [DOI] [PubMed] [Google Scholar]
  5. Cohen B. I., Raicht R. F., Salen G., Mosbach E. H. An improved method for the isolation, quantitation, and identification of bile acids in rats feces. Anal Biochem. 1975 Apr;64(2):567–577. doi: 10.1016/0003-2697(75)90469-8. [DOI] [PubMed] [Google Scholar]
  6. Danielsson H. Effect of biliary obstruction on formation and metabolism of bile acids in rat. Steroids. 1973 Oct;22(4):567–579. doi: 10.1016/0039-128x(73)90013-5. [DOI] [PubMed] [Google Scholar]
  7. Dickinson A. B., Gustafsson B. E., Norman A. Determination of bile acid conversion potencies of intestinal bacteria by screening in vitro and subsequent establishment in germfree rats. Acta Pathol Microbiol Scand B Microbiol Immunol. 1971;79(5):691–698. doi: 10.1111/j.1699-0463.1971.tb00098.x. [DOI] [PubMed] [Google Scholar]
  8. Eriksson H., Taylor W., Sjövall J. Occurrence of sulfated 5alpha-cholanoates in rat bile. J Lipid Res. 1978 Feb;19(2):177–186. [PubMed] [Google Scholar]
  9. Eyssen H. J., Parmentier G. G., Compernolle F. C., De Pauw G., Piessens-Denef M. Biohydrogenation of sterols by Eubacterium ATCC 21,408--Nova species. Eur J Biochem. 1973 Jul 16;36(2):411–421. doi: 10.1111/j.1432-1033.1973.tb02926.x. [DOI] [PubMed] [Google Scholar]
  10. Eyssen H. J., Parmentier G. G., Mertens J. A. Sulfate bile acids in germ-free and conventional mice. Eur J Biochem. 1976 Jul 15;66(3):507–514. doi: 10.1111/j.1432-1033.1976.tb10576.x. [DOI] [PubMed] [Google Scholar]
  11. Eyssen H., Piessens-Denef M., Parmentier G. Role of the cecum in maintaing 5 -steroid- and fatty acid-reducing activity of the rat intestinal microflora. J Nutr. 1972 Nov;102(11):1501–1511. doi: 10.1093/jn/102.11.1501. [DOI] [PubMed] [Google Scholar]
  12. Eyssen H., Smets L., Parmentier G., Janssen G. Sex-linked differences in bile acid metabolism of germfree rats. Life Sci. 1977 Sep 1;21(5):707–712. doi: 10.1016/0024-3205(77)90079-0. [DOI] [PubMed] [Google Scholar]
  13. Gustafsson B. E., Midtvedt T., Norman A. Isolated fecal microorganisms capable of 7-alpha-dehydroxylating bile acids. J Exp Med. 1966 Feb 1;123(2):413–432. doi: 10.1084/jem.123.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heijenoort Y., Sacquet E., Riottot M. Dégradation bactérienne de l'acide beta-muricholique ches le rat. Nutr Metab. 1974;17(2):65–73. [PubMed] [Google Scholar]
  15. Kellogg T. F., Wostmann B. S. Fecal neutral steroids and bile acids from germfree rats. J Lipid Res. 1969 Sep;10(5):495–503. [PubMed] [Google Scholar]
  16. Kern F., Jr, Eriksson H., Curstedt T., Sjövall J. Effect of ethynylestradiol on biliary excretion of bile acids, phosphatidylcolines, and cholesterol in the bile fistula rat. J Lipid Res. 1977 Sep;18(5):623–634. [PubMed] [Google Scholar]
  17. Kuriyama K., Ban Y., Nakashima T., Murata T. Simultaneous determination of biliary cile acids in rat: electron impact and ammonia chemical ionization mass spectrometric analyses of bile acids. Steroids. 1979;34(6 Spec No):717–728. [PubMed] [Google Scholar]
  18. MacDonald I. A., Jellett J. F., Mahony D. E., Holdeman L. V. Bile salt 3 alpha- and 12 alpha-hydroxysteroid dehydrogenases from Eubacterium lentum and related organisms. Appl Environ Microbiol. 1979 May;37(5):992–1000. doi: 10.1128/aem.37.5.992-1000.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Madsen D. C., Wostmann B. S., Beaver M., Chang L. Effects of Aureomycin on bile acids in rats. J Lab Clin Med. 1978 Apr;91(4):605–611. [PubMed] [Google Scholar]
  20. Madsen D., Beaver M., Chang L., Bruckner-Kardoss E., Wostmann B. Analysis of bile acids in conventional and germfree rats. J Lipid Res. 1976 Mar;17(2):107–111. [PubMed] [Google Scholar]
  21. Midtvedt T., Norman A. Bile acid transformations by microbial strains belonging to genera found in intestinal contents. Acta Pathol Microbiol Scand. 1967;71(4):629–638. doi: 10.1111/j.1699-0463.1967.tb05183.x. [DOI] [PubMed] [Google Scholar]
  22. Nair P. P., Garcia C. A modified gas-liquid chromatographic procedure for the rapid determination of bile acids in biological fluids. Anal Biochem. 1969 Apr 11;29(1):164–166. doi: 10.1016/0003-2697(69)90020-7. [DOI] [PubMed] [Google Scholar]
  23. Parmentier G. G., Smets L. M., Jannsen G. A., Eyssen H. J. Effects of cholesterol feeding on the bile acids of male and female germ-free rats. Eur J Biochem. 1981 May 15;116(2):365–372. doi: 10.1111/j.1432-1033.1981.tb05344.x. [DOI] [PubMed] [Google Scholar]
  24. Sacquet E. C., Raibaud P. M., Mejean C., Riottot M. J., Leprince C., Leglise P. C. Bacterial formation of omega-muricholic acid in rats. Appl Environ Microbiol. 1979 Jun;37(6):1127–1131. doi: 10.1128/aem.37.6.1127-1131.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sperry J. F., Wilkins T. D. Arginine, a growth-limiting factor for Eubacterium lentum. J Bacteriol. 1976 Aug;127(2):780–784. doi: 10.1128/jb.127.2.780-784.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stellwag E. J., Hylemon P. B. 7alpha-Dehydroxylation of cholic acid and chenodeoxycholic acid by Clostridium leptum. J Lipid Res. 1979 Mar;20(3):325–333. [PubMed] [Google Scholar]
  27. Wensinck F., Ruseler-van Embden J. G. The intestinal flora of colonization-resistant mice. J Hyg (Lond) 1971 Sep;69(3):413–421. doi: 10.1017/s0022172400021665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. White B. A., Lipsky R. L., Fricke R. J., Hylemon P. B. Bile acid induction specificity of 7 alpha-dehydroxylase activity in an intestinal Eubacterium species. Steroids. 1980 Jan;35(1):103–109. doi: 10.1016/0039-128x(80)90115-4. [DOI] [PubMed] [Google Scholar]
  29. Wostmann B. S., Beaver M., Chang L., Madsen D. Effect of autoclaving of a lactose-containing diet on cholesterol and bile acid metabolism of conventional and germ-free rats. Am J Clin Nutr. 1977 Dec;30(12):1999–2005. doi: 10.1093/ajcn/30.12.1999. [DOI] [PubMed] [Google Scholar]
  30. van der Waaij D. The persistent absence of Enterobacteriaceae from the intestinal flora of mice following antibiotic treatment. J Infect Dis. 1968 Feb;118(1):32–38. doi: 10.1093/infdis/118.1.32. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES