Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1983 Feb;45(2):716–719. doi: 10.1128/aem.45.2.716-719.1983

Adaptation of Rhodopseudomonas sphaeroides to Growth on d-(—)-Tartrate and Large-Scale Production of a Constitutive d-(—)-Tartrate Dehydratase During Growth on dl-Malate

Hergo Rode 1, Friedrich Giffhorn 1
PMCID: PMC242352  PMID: 16346221

Abstract

Of 10 strains of the purple non-sulfur bacterium Rhodopseudomonas sphaeroides, 8 acquired the ability to grow on d-(—)-tartrate; however, growth occurred only after extended lag phases ranging from 2 to 14 days. These lag phases occurred because only a small number of inoculum cells were able to grow by forming the enzyme d-(—)-tartrate dehydratase [d-(—)-tartrate hydro-lyase; EC number not yet available]. Once cells had grown on d-(—)-tartrate, d-(—)-tartrate dehydratase was formed constitutively. Therefore, mass cultivation of R. sphaeroides for production of large quantities of enzyme was possible on substrates much cheaper than d-(—)-tartrate. When 0.38 mol of dl-malate was used as a substrate in a chemotrophic fed-batch culture, a final biomass of 15 g (dry weight) liter−1 and 1,500 U of d-(—)-tartrate dehydratase liter of culture−1 were formed. The enzyme can be used for selective cleavage of racemic tartaric acid and for quantitative determination of d-(—)-tartrate.

Full text

PDF
716

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfredsson G. A., Barker R. M., Old D. C., Duguid J. P. Use of tartaric acid isomers and citric acid in the biotyping of Salmonella typhimurium. J Hyg (Lond) 1972 Dec;70(4):651–666. doi: 10.1017/s0022172400022518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  3. Duguid J. P., Anderson E. S., Alfredsson G. A., Barker R., Old D. C. A new biotyping scheme for Salmonella typhimurium and its phylogenetic significance. J Med Microbiol. 1975 Feb;8(1):149–166. doi: 10.1099/00222615-8-1-149. [DOI] [PubMed] [Google Scholar]
  4. LA RIVIERE J. W. Specificity of whole cells and cell-free extracts of Pseudomonas putida towards (+), (-), and meso-tartrate. Biochim Biophys Acta. 1956 Oct;22(1):206–207. doi: 10.1016/0006-3002(56)90250-5. [DOI] [PubMed] [Google Scholar]
  5. Lueking D., Tokuhisa D., Sojka G. Glycerol assimilation by a mutant of Rhodopseudomonas capsulata. J Bacteriol. 1973 Sep;115(3):897–903. doi: 10.1128/jb.115.3.897-903.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. MARTIN W. R., FOSTER J. W. Adaptation patterns in the utilization of the stereo-isomers of tartaric acid by a pseudomonad. J Bacteriol. 1957 May;73(5):683–684. doi: 10.1128/jb.73.5.683-684.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rode H., Giffhorn F. D-(--)-tartrate dehydratase of Rhodopseudomonas sphaeroides: purification, characterization, and application to enzymatic determination of D-(--)-tartrate. J Bacteriol. 1982 Jun;150(3):1061–1068. doi: 10.1128/jb.150.3.1061-1068.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rode H., Giffhorn F. Ferrous- or cobalt ion-dependent D-(-)-tartrate dehydratase of pseudomonads: purification and properties. J Bacteriol. 1982 Sep;151(3):1602–1604. doi: 10.1128/jb.151.3.1602-1604.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. SHILO M., STANIER R. Y. The utilization of the tartaric acids by pseudomonads. J Gen Microbiol. 1957 Apr;16(2):482–490. doi: 10.1099/00221287-16-2-482. [DOI] [PubMed] [Google Scholar]
  10. SHILO M. The enzymic conversion of the tartaric acids to oxaloacetic acid. J Gen Microbiol. 1957 Apr;16(2):472–481. doi: 10.1099/00221287-16-2-472. [DOI] [PubMed] [Google Scholar]
  11. SZYMONA M., DOUDOROFF M. Carbohydrate metabolism in Rhodopseudomonas sphreoides. J Gen Microbiol. 1960 Feb;22:167–183. doi: 10.1099/00221287-22-1-167. [DOI] [PubMed] [Google Scholar]
  12. Vaughn R. H., Marsh G. L., Stadtman T. C., Cantino B. C. Decomposition of Tartrates by the Coliform Bacteria. J Bacteriol. 1946 Sep;52(3):311–325. [PMC free article] [PubMed] [Google Scholar]
  13. van Niel C. B. THE CULTURE, GENERAL PHYSIOLOGY, MORPHOLOGY, AND CLASSIFICATION OF THE NON-SULFUR PURPLE AND BROWN BACTERIA. Bacteriol Rev. 1944 Mar;8(1):1–118. doi: 10.1128/br.8.1.1-118.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES