Abstract
α-Amylase (EC 3.2.1.1) was excreted by Calvatia gigantea in liquid growth media containing different sources of starch. Among the factors affecting enzyme production in shake flasks were the type and the concentration of starch and the nitrogen source supplied. Optimum cultural conditions for maximum enzyme production were: soluble starch concentration, 5%; inoculum size, 3.75 × 105 conidia per ml; 5-day cultivation time at 28 to 30°C. The observed maximum yield of 81.3 U of saccharifying enzyme activity per ml of growth medium was the highest ever reported in the literature for submerged cultures. Partially purified enzyme functioned optimally at pH 4.5 to 5.5 and 53 to 58°C. The activation energy of enzymic hydrolysis of starch in the range of 20 to 40°C was 8,125 cal/mol (ca. 3.41 × 104 J). The apparent Km value of the enzyme at 25°C was 7.68 × 10−4 g/ml. Some of the properties of the enzyme under investigation were similar to those of α-amylases excreted from molds producing large amounts of the enzyme.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Drouliscos N. J., Macris B. J., Kokke R. Growth of Fusarium moniliforme on carob aqueous extract and nutritional evaluation of its biomass. Appl Environ Microbiol. 1976 May;31(5):691–694. doi: 10.1128/aem.31.5.691-694.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HENIS Y., TAGARI H., VOLCANI R. EFFECT OF WATER EXTRACTS OF CAROB PODS, TANNIC ACID, AND THEIR DERIVATIVES ON THE MORPHOLOGY AND GROWTH OF MICROORGANISMS. Appl Microbiol. 1964 May;12:204–209. doi: 10.1128/am.12.3.204-209.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kundu A. K., Das S. Production of amylase in liquid culture by a strain of Aspergillus oryzae. Appl Microbiol. 1970 Apr;19(4):598–603. doi: 10.1128/am.19.4.598-603.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- McWethy S. J., Hartman P. A. Purification and some properties of an extracellular alpha-amylase from Bacteroides amylophilus. J Bacteriol. 1977 Mar;129(3):1537–1544. doi: 10.1128/jb.129.3.1537-1544.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBYT J., FRENCH D. Action pattern and specificity of an amylase from Bacillus subtilis. Arch Biochem Biophys. 1963 Mar;100:451–467. doi: 10.1016/0003-9861(63)90112-7. [DOI] [PubMed] [Google Scholar]
- Robyt J. F., French D. Multiple attach hypothesis of alpha-amylase action: action of porcine pancreatic, human salivary, and Aspergillus oryzae alpha-amylases. Arch Biochem Biophys. 1967 Oct;122(1):8–16. doi: 10.1016/0003-9861(67)90118-x. [DOI] [PubMed] [Google Scholar]
- WALKER G. J. THE CELL-BOUND ALPHA-AMYLASES OF STREPTOCOCCUS BOVIS. Biochem J. 1965 Feb;94:289–298. doi: 10.1042/bj0940289. [DOI] [PMC free article] [PubMed] [Google Scholar]
