Abstract
Trihalomethanes, carbon tetrachloride, 1,1,1-trichloroethane, 1,2-dibromoethane, chlorinated benzenes, ethylbenzene, and naphthalene at concentrations commonly found in surface and groundwater were incubated under anoxic conditions to study their transformability in the presence of denitrifying bacteria. None of the aromatic compounds showed significant utilization relative to sterile controls at initial concentrations from 41 to 114 micrograms/liter after 11 weeks of incubation. Of the halogenated aliphatic compounds studied, transformations of carbon tetrachloride and brominated trihalomethanes were observed after 8 weeks in batch denitrification cultures. Carbon from the decomposition of carbon tetrachloride was both assimilated into cell material and mineralized to carbon dioxide. How this was possible remains unexplained, since carbon tetrachloride is transformed to CO2 by hydrolysis and not by oxidation-reduction. Chloroform was detected in bacterial cultures with carbon tetrachloride initially present, indicating that reductive dechlorination had occurred in addition to hydrolysis. The data suggest that transformations of certain halogenated aliphatic compounds are likely to occur under denitrification conditions in the environment.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bouwer E. J., McCarty P. L. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol. 1983 Apr;45(4):1286–1294. doi: 10.1128/aem.45.4.1286-1294.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EVANS W. C. THE MICROBIOLOGICAL DEGRADATION OF AROMATIC COMPOUNDS. J Gen Microbiol. 1963 Aug;32:177–184. doi: 10.1099/00221287-32-2-177. [DOI] [PubMed] [Google Scholar]
- Esaac E. G., Matsumura F. Metabolism of insecticides by reductive systems. Pharmacol Ther. 1980;9(1):1–26. doi: 10.1016/0163-7258(80)90014-5. [DOI] [PubMed] [Google Scholar]
- Evans W. C. Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature. 1977 Nov 3;270(5632):17–22. doi: 10.1038/270017a0. [DOI] [PubMed] [Google Scholar]
- Fogel S., Lancione R. L., Sewall A. E. Enhanced biodegradation of methoxychlor in soil under sequential environmental conditions. Appl Environ Microbiol. 1982 Jul;44(1):113–120. doi: 10.1128/aem.44.1.113-120.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Healy J. B., Young L. Y., Reinhard M. Methanogenic decomposition of ferulic Acid, a model lignin derivative. Appl Environ Microbiol. 1980 Feb;39(2):436–444. doi: 10.1128/aem.39.2.436-444.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]