Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1983 Apr;45(4):1408–1410. doi: 10.1128/aem.45.4.1408-1410.1983

Effects of 2-Bromoethanesulfonic Acid and 2- Chloroethanesulfonic Acid on Acetate Utilization in a Continuous-Flow Methanogenic Fixed-Film Column

Edward J Bouwer 1,, Perry L McCarty 1
PMCID: PMC242472  PMID: 16346280

Abstract

2-Bromoethanesulfonic acid (BESA) and 2-chloroethanesulfonic acid (CESA) have been reported to be potent inhibitors of methane formation during methanogenic decomposition in batch cultures. However, in a laboratory-scale continuous-flow methanogenic fixed-film column containing a predominance of acetate-decarboxylating methanogens, BESA at 6 × 10−4 M produced only a 41% inhibition of acetate utilization, and CESA at 5.4 × 10−4 M produced a 37% inhibition of acetate utilization. BESA and CESA concentrations were not monitored in the effluent, so their fate is unknown. The organisms in the column were capable of degrading trace halogenated aliphatic compounds (∼30 μg/liter) with acetate (100 mg/liter) as the primary substrate. Previous exposure of the cells to halogenated organic compounds may have conferred resistance to BESA and CESA. Degradation of the inhibitor compounds is another possible explanation for the observed effects.

Full text

PDF
1408

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouwer E. J., McCarty P. L. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol. 1983 Apr;45(4):1286–1294. doi: 10.1128/aem.45.4.1286-1294.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Healy J. B., Young L. Y., Reinhard M. Methanogenic decomposition of ferulic Acid, a model lignin derivative. Appl Environ Microbiol. 1980 Feb;39(2):436–444. doi: 10.1128/aem.39.2.436-444.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Oremland R. S. Microbial formation of ethane in anoxic estuarine sediments. Appl Environ Microbiol. 1981 Jul;42(1):122–129. doi: 10.1128/aem.42.1.122-129.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Zehnder A. J., Brock T. D. Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol. 1979 Jan;137(1):420–432. doi: 10.1128/jb.137.1.420-432.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Zehnder A. J., Huser B. A., Brock T. D., Wuhrmann K. Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch Microbiol. 1980 Jan;124(1):1–11. doi: 10.1007/BF00407022. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES