Abstract
Thirty-nine wild-type strains of Rhizobium japonicum have been studied for their ability to synthesize nitrogenase ex planta in defined liquid media under microaerobic conditions. Twenty-one produced more than trace amounts of acetylene reduction activity, but only a few of these yielded high activity. The oxygen response curves were similar for most of the nitrogenase-positive strains. The strains derepressible for activity had several phenotypic characteristics different from non-derepressible strains. These included slower growth and lower oxygen consumption under microaerobic conditions and lower extracellular polysaccharide production. Extracellular polysaccharide production during growth on gluconate in every nitrogenase-positive strain assayed was lower under both aerobic and microaerobic conditions than the non-derepressible strains. These phenotypic characteristics may be representative of a genotype of a subspecies of R. japonicum. These studies were done in part to enlarge the base number of strains available for studies on the physiology, biochemistry, and genetics of nitrogen fixation.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguilar O. M., Favelukes G. Requirement for carbon dioxide for nonsymbiotic expression of Rhizobium japonicum nitrogenase activity. J Bacteriol. 1982 Oct;152(1):510–513. doi: 10.1128/jb.152.1.510-513.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BAROOAH P. P., SEN A. NITROGEN FIXATION BY BEIJERINCKIA IN RELATION TO SLIME FORMATION. Arch Mikrobiol. 1964 Jun 26;48:381–385. doi: 10.1007/BF00405981. [DOI] [PubMed] [Google Scholar]
- Bednarski M. A., Reporter M. Expression of rhizobial nitrogenase: influence of plant cell-conditioned medium. Appl Environ Microbiol. 1978 Jul;36(1):115–120. doi: 10.1128/aem.36.1.115-120.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergersen F. J., Turner G. L., Gibson A. H., Dudman W. F. Nitrogenase activity and respiration of cultures of Rhizobium spp. with special reference to concentrations of dissolved oxygen. Biochim Biophys Acta. 1976 Aug 24;444(1):164–174. doi: 10.1016/0304-4165(76)90233-6. [DOI] [PubMed] [Google Scholar]
- Hill S. Acetylene reduction by Klebsiella neumoniae in air related to colony dimorphism on low fixed nitrogen. J Gen Microbiol. 1975 Nov;91(1):207–209. doi: 10.1099/00221287-91-1-207. [DOI] [PubMed] [Google Scholar]
- Kang S., Markovitz A. Induction of capsular polysaccharide synthesis by rho-fluorophenylalanine in Escherichia coli wild type and strains with altered phenylalanyl soluble ribonucleic acid synthetase. J Bacteriol. 1967 Feb;93(2):584–591. doi: 10.1128/jb.93.2.584-591.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keister D. L., Evans W. R. Oxygen requirement for acetylene reduction by pure cultures of rhizobia. J Bacteriol. 1976 Jul;127(1):149–153. doi: 10.1128/jb.127.1.149-153.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy L. D., Pankhurst C. E. Nitrogenase activity of Rhizobium sp. strains in pure culture in relation to extracellular polysaccharide composition and antigenic affinity. Microbios. 1978;23(93-94):167–173. [PubMed] [Google Scholar]
- Kuykendall L. D., Elkan G. H. Rhizobium japonicum derivatives differing in nitrogen-fixing efficiency and carbohydrate utilization. Appl Environ Microbiol. 1976 Oct;32(4):511–519. doi: 10.1128/aem.32.4.511-519.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lim S. T., Shanmugam K. T. Regulation of hydrogen utilisation in Rhizobium japonicum by cyclic AMP. Biochim Biophys Acta. 1979 May 16;584(3):479–492. doi: 10.1016/0304-4165(79)90121-1. [DOI] [PubMed] [Google Scholar]
- Ludwig R. A., Signer E. R. Glutamine synthetase and control of nitrogen fixation in Rhizobium. Nature. 1977 May 19;267(5608):245–248. doi: 10.1038/267245a0. [DOI] [PubMed] [Google Scholar]
- Skotnicki M. L., Rolfe B. G., Reporter M. Nitrogenase activity in pure cultures of spectinomycin-resistant fast and slow-growing Rhizobium. Biochem Biophys Res Commun. 1979 Feb 28;86(4):968–975. doi: 10.1016/0006-291x(79)90212-2. [DOI] [PubMed] [Google Scholar]
- Stacey G., Bottomley P. J., Van Baalen C., Tabita F. R. Control of heterocyst and nitrogenase synthesis in cyanobacteria. J Bacteriol. 1979 Jan;137(1):321–326. doi: 10.1128/jb.137.1.321-326.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Upchurch R. G., Elkan G. H. Comparison of colony morphology, salt tolerance, and effectiveness in Rhizobium japonicum. Can J Microbiol. 1977 Sep;23(9):1118–1122. doi: 10.1139/m77-167. [DOI] [PubMed] [Google Scholar]
- Werner D., Stripf R. Differentiation of Rhizobium japonicum, I. enzymatic comparison of nitrogenase repressed and derepressed free living cells and of bacteroids. Z Naturforsch C. 1978 Mar-Apr;33(3-4):245–252. doi: 10.1515/znc-1978-3-413. [DOI] [PubMed] [Google Scholar]