Abstract
Present epidemic influenza is uncontrolled by immuno- or chemoprophylaxis. Mutants of varying antigenic composition arise with relatively high frequency in nature and are able to circumvent herd, or induced, immunity. Also, drug-resistant viruses can be selected in vitro and this resistance can be exchanged to other viruses by gene reassortment. Combined immuno- and chemoprophylaxis may provide a more effective approach to the ultimate control of the disease. Most antiviral compounds have been selected by random screening in the laboratory. Application of more specific enzyme assays such as the virion-associated RNA transcriptase assays may produce other compounds with a defined mode of action - semi-rational chemotherapy. RNA and polypeptide sequence studies are in progress elsewhere to define transcription and translation initiation sites or virus adsorption sites. Such knowledge could lead to a new generation of antiviral compounds. Specific delivery of virus inhibitory compounds is an interesting problem. Liposomes are lipid spheres, and these have been used for the delivery of antiviral compounds.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bangham A. D., Standish M. M., Watkins J. C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965 Aug;13(1):238–252. doi: 10.1016/s0022-2836(65)80093-6. [DOI] [PubMed] [Google Scholar]
- Bauer D. J. Antiviral chemotherapy: the first decade. Br Med J. 1973 Aug 4;3(5874):275–279. doi: 10.1136/bmj.3.5874.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chow N. L., Simpson R. W. RNA-dependent RNA polymerase activity associated with virions and subviral particles of myxoviruses. Proc Natl Acad Sci U S A. 1971 Apr;68(4):752–756. doi: 10.1073/pnas.68.4.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIES W. L., GRUNERT R. R., HAFF R. F., MCGAHEN J. W., NEUMAYER E. M., PAULSHOCK M., WATTS J. C., WOOD T. R., HERMANN E. C., HOFFMANN C. E. ANTIVIRAL ACTIVITY OF 1-ADAMANTANAMINE (AMANTADINE). Science. 1964 May 15;144(3620):862–863. doi: 10.1126/science.144.3620.862. [DOI] [PubMed] [Google Scholar]
- Elion G. B., Furman P. A., Fyfe J. A., de Miranda P., Beauchamp L., Schaeffer H. J. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5716–5720. doi: 10.1073/pnas.74.12.5716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson G. G. Sensitivity of influenza A virus to amantadine. J Infect Dis. 1977 Aug;136(2):301–302. doi: 10.1093/infdis/136.2.301. [DOI] [PubMed] [Google Scholar]
- McGeoch D., Fellner P., Newton C. Influenza virus genome consists of eight distinct RNA species. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3045–3049. doi: 10.1073/pnas.73.9.3045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oxford J. S., Logan I. S., Potter C. W. In vivo selection of an influenza A2 strain resistant to amantadine. Nature. 1970 Apr 4;226(5240):82–83. doi: 10.1038/226082a0. [DOI] [PubMed] [Google Scholar]
- Oxford J. S., Perrin D. D. Influenza RNA transcriptase inhibitors: studies in vitro and in vivo. Ann N Y Acad Sci. 1977 Mar 4;284:613–623. doi: 10.1111/j.1749-6632.1977.tb21995.x. [DOI] [PubMed] [Google Scholar]
- Oxford J. S., Perrin D. D. Inhibition of the particle-associated RNA-dependent RNA polymerase activity of influenza viruses by chelating agents. J Gen Virol. 1974 Apr;23(1):59–71. doi: 10.1099/0022-1317-23-1-59. [DOI] [PubMed] [Google Scholar]
- Oxford J. S. Polypeptide composition of Influenza B viruses and enzymes associated with the purified virus particles. J Virol. 1973 Oct;12(4):827–835. doi: 10.1128/jvi.12.4.827-835.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oxford J. S. Specific inhibitors of influenza virus replication as potential chemoprophylactic agents. J Antimicrob Chemother. 1975 Mar;1(1):7–23. doi: 10.1093/jac/1.1.7. [DOI] [PubMed] [Google Scholar]
- Sabin A. B. Amantadine and influenza: evaluation of conflicting reports. J Infect Dis. 1978 Oct;138(4):557–568. doi: 10.1093/infdis/138.4.557. [DOI] [PubMed] [Google Scholar]
- Schaeffer H. J., Beauchamp L., de Miranda P., Elion G. B., Bauer D. J., Collins P. 9-(2-hydroxyethoxymethyl) guanine activity against viruses of the herpes group. Nature. 1978 Apr 13;272(5654):583–585. doi: 10.1038/272583a0. [DOI] [PubMed] [Google Scholar]
- Scrutton M. C., Wu C. W., Goldthwait D. A. The presence and possible role of zinc in RNA polymerase obtained from Escherichia coli. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2497–2501. doi: 10.1073/pnas.68.10.2497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sidwell R. W., Huffman J. H., Khare G. P., Allen L. B., Witkowski J. T., Robins R. K. Broad-spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science. 1972 Aug 25;177(4050):705–706. doi: 10.1126/science.177.4050.705. [DOI] [PubMed] [Google Scholar]
- Simpson R. W., Hirst G. K. Temperature-sensitive mutants of influenza A virus: isolation of mutants and preliminary observations on genetic recombination and complementation. Virology. 1968 May;35(1):41–49. doi: 10.1016/0042-6822(68)90303-6. [DOI] [PubMed] [Google Scholar]
- Skehel J. J. RNA-dependent RNA polymerase activity of the influenza virus. Virology. 1971 Sep;45(3):793–796. doi: 10.1016/0042-6822(71)90197-8. [DOI] [PubMed] [Google Scholar]
- Skehel J. J., Waterfield M. D. Studies on the primary structure of the influenza virus hemagglutinin. Proc Natl Acad Sci U S A. 1975 Jan;72(1):93–97. doi: 10.1073/pnas.72.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]




