Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1977 Aug;34(2):175–184. doi: 10.1128/aem.34.2.175-184.1977

Parathion utilization by bacterial symbionts in a chemostat.

C G Daughton, D P Hsieh
PMCID: PMC242618  PMID: 410368

Abstract

A continuous-culture device was used to select and enrich for microorganisms, from sewage and agricultural runoff, that were capable of using the organophosphorus insecticide parathion as a sole growth substrate. Parathion was dissimilated by the highly acclimated symbiotic activities of Pseudomonas stutzeri, which non-oxidatively and cometabolically hydrolyzed the parathion to ionic diethyl thiophosphate and p-nitrophenol, and P. aeruginosa, which utilized the p-nitrophenol as a sole carbon and energy source. Ionic diethyl thiophosphate was found to be inert to any transformations. Methyl parathion was dissimilated in an analogous way. The device functioned as a chemostat with parathion as the growth-limiting nutrient, and extraordinarily high dissimilation rates were attained for parathion (8 g/liter per day) and for p-nitrophenol (7 g/liter per day). This is the first report of parathion utilization by a defined microbial culture and by symbiotic microbial attack and of dissimilation of an organophosphorus pesticide in a chemostat.

Full text

PDF
175

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chrastil J. Colorimetric estimation of phenols and tyrosine. Anal Chem. 1975 Nov;47(13):2293–2296. doi: 10.1021/ac60363a007. [DOI] [PubMed] [Google Scholar]
  2. Chu J. P., Kirsch E. J. Metabolism of pentachlorophenol by an axenic bacterial culture. Appl Microbiol. 1972 May;23(5):1033–1035. doi: 10.1128/am.23.5.1033-1035.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coley G., Stutz C. N. Treatment of parathion wastes and other organics. J Water Pollut Control Fed. 1966 Aug;38(8):1345–1349. [PubMed] [Google Scholar]
  4. Daughton C. G., Crosby D. G., Garnas R. L., Hsieh D. P. Analysis of phosphorus-containing hydrolytic products of organophosphorus insecticides in water. J Agric Food Chem. 1976 Mar-Apr;24(2):236–241. doi: 10.1021/jf60204a015. [DOI] [PubMed] [Google Scholar]
  5. Eckstein F. Investigation of enzyme mechanisms with nucleoside phosphorothioates. Angew Chem Int Ed Engl. 1975 Mar;14(3):160–166. doi: 10.1002/anie.197501601. [DOI] [PubMed] [Google Scholar]
  6. Flashinski S. J., Lichtenstein E. P. Metabolism of dyfonate by soil fungi. Can J Microbiol. 1974 Mar;20(3):399–411. doi: 10.1139/m74-061. [DOI] [PubMed] [Google Scholar]
  7. GALANOS D. S., KAPOULAS V. M. FRACTIONATION AND IDENTIFICATION OF MILK POLAR LIPIDS: TRIESTER GLYCOPHOSPHOLIPIDS. Biochim Biophys Acta. 1965 Apr 5;98:293–312. doi: 10.1016/0005-2760(65)90122-0. [DOI] [PubMed] [Google Scholar]
  8. GALANOS D. S., KAPOULAS V. M. OCCURRENCE OF TRIESTER GLYCOPHOSPHOLIPIDS IN ANIMAL AND PLANT TISSUES, AND THEIR BIOLOGICAL SIGNIFICANCE. Biochim Biophys Acta. 1965 Apr 5;98:313–328. doi: 10.1016/0005-2760(65)90123-2. [DOI] [PubMed] [Google Scholar]
  9. Gerlt J. A., Whitman G. J. Purification and properties of a phosphohydrolase from Enterobacter aerogenes. J Biol Chem. 1975 Jul 10;250(13):5053–5058. [PubMed] [Google Scholar]
  10. Grunwell J. R., Erickson R. H. Photolysis of parathion (O,O-diethyl-O-(4-nitrophenyl)thiophosphate). New products. J Agric Food Chem. 1973 Sep-Oct;21(5):929–931. doi: 10.1021/jf60189a003. [DOI] [PubMed] [Google Scholar]
  11. Gunner H. B., Zuckerman B. M. Degradation of 'Diazinon' by synergistic microbial action. Nature. 1968 Mar 23;217(5134):1183–1184. doi: 10.1038/2171183a0. [DOI] [PubMed] [Google Scholar]
  12. Heuer B., Birk Y., Yaron B. Effect of phosphatases on the persistence of organophosphorus insecticides in soil and water. J Agric Food Chem. 1976 May-Jun;24(3):611–614. doi: 10.1021/jf60205a028. [DOI] [PubMed] [Google Scholar]
  13. Huber T. J., Street J. R., Bull A. T., Cook K. A., Cain R. B. Aromatic metabolism in the fungi. Growth of Rhodotorula mucilaginosa in p-hydroxybenzoate-limited chemostats and the effects of growth rate on the synthesis of enzymes of the 3-oxoadipate pathway. Arch Microbiol. 1975;102(2):139–144. doi: 10.1007/BF00428358. [DOI] [PubMed] [Google Scholar]
  14. Katan J., Fuhremann T. W., Lichtenstein E. P. Binding of (14C) parathion in soil: a reassessment of pesticide persistence. Science. 1976 Sep 3;193(4256):891–894. doi: 10.1126/science.948750. [DOI] [PubMed] [Google Scholar]
  15. Matsumura F., Boush G. M. Malathion degradation by Trichoderma viride and a Pseudomonas species. Science. 1966 Sep 9;153(3741):1278–1280. doi: 10.1126/science.153.3741.1278. [DOI] [PubMed] [Google Scholar]
  16. Miyamoto J., Kitagawa K., Sato Y. Metabolism of organophosphorus insecticides by Bacillus subtilis, with special emphasis on Sumithion. Jpn J Exp Med. 1966 Apr;36(2):211–225. [PubMed] [Google Scholar]
  17. Mostafa I. Y., Fakhr I. M., Bahig M. R., el-Zawahry Y. A. Metabolism of organophosphorus insecticides. 13. Degradation of malathion by Rhizobium spp. Arch Mikrobiol. 1972;86(3):221–224. doi: 10.1007/BF00425234. [DOI] [PubMed] [Google Scholar]
  18. Motoyama N., Dauterman W. C. The role of nonoxidative metabolism in organophosphorus resistance. J Agric Food Chem. 1974 May-Jun;22(3):350–356. doi: 10.1021/jf60193a055. [DOI] [PubMed] [Google Scholar]
  19. Munnecke D. M., Hsieh D. P. Microbial decontamination of parathion and p-nitrophenol in aqueous media. Appl Microbiol. 1974 Aug;28(2):212–217. doi: 10.1128/am.28.2.212-217.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Munnecke D. M., Hsieh D. P. Pathways of microbial metabolism of parathion. Appl Environ Microbiol. 1976 Jan;31(1):63–69. doi: 10.1128/aem.31.1.63-69.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nakatsugawa T., Tolman N. M., Dahm P. A. Degradation of parathion in the rat. Biochem Pharmacol. 1969 May;18(5):1103–1114. doi: 10.1016/0006-2952(69)90114-2. [DOI] [PubMed] [Google Scholar]
  22. Nakatsugawa T., Tolman N. M., Dahm P. A. Metabolism of S35-parathion in the house fly. J Econ Entomol. 1969 Apr;62(2):408–411. doi: 10.1093/jee/62.2.408. [DOI] [PubMed] [Google Scholar]
  23. Neumann H., Boross L., Katchalski E. Hydrolysis of S-substituted monoesters of phosphorothioic acid by alkaline phosphatase from Escherichia coli. J Biol Chem. 1967 Jul 10;242(13):3142–3147. [PubMed] [Google Scholar]
  24. Palleroni N. J., Doudoroff M., Stanier R. Y., Solánes R. E., Mandel M. Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri group. J Gen Microbiol. 1970 Feb;60(2):215–231. doi: 10.1099/00221287-60-2-215. [DOI] [PubMed] [Google Scholar]
  25. Pellegrini G., Santi R. Potentiation of toxicity of organophosphorus compounds containing carboxylic ester functions toward warm-blooded animals by some organophosphorus impurities. J Agric Food Chem. 1972 Sep-Oct;20(5):944–950. doi: 10.1021/jf60183a035. [DOI] [PubMed] [Google Scholar]
  26. Ptashne K. A., Wolcott R. M., Neal R. A. Oxygen-18 studies on the chemical mechanisms of the mixed function oxidase catalyzed desulfuration and dearylation reactions of parathion. J Pharmacol Exp Ther. 1971 Nov;179(2):380–385. [PubMed] [Google Scholar]
  27. Senior E., Bull A. T., Slater J. H. Enzyme evolution in a microbial community growing on the herbicide Dalapon. Nature. 1976 Oct 7;263(5577):476–479. doi: 10.1038/263476a0. [DOI] [PubMed] [Google Scholar]
  28. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  29. Suffet I. H., Faust S. D. The p-value approach to quantitative liquid-liquid extraction of pesticides from water. 1. Organophosphates: choice of pH and solvent. J Agric Food Chem. 1972 Jan-Feb;20(1):52–56. doi: 10.1021/jf60179a039. [DOI] [PubMed] [Google Scholar]
  30. Tyler J. E., Finn R. K. Growth rates of a pseudomonad on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol. Appl Microbiol. 1974 Aug;28(2):181–184. doi: 10.1128/am.28.2.181-184.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wase D. A., Hough J. S. Continuous culture of yeast on phenol. J Gen Microbiol. 1966 Jan;42(1):13–23. doi: 10.1099/00221287-42-1-13. [DOI] [PubMed] [Google Scholar]
  32. Wolfenden R., Spence G. Derepression of phosphomonoesterase and phosphodiesterase activities in Aerobacter aerogenes. Biochim Biophys Acta. 1967 Sep 12;146(1):296–298. doi: 10.1016/0005-2744(67)90099-x. [DOI] [PubMed] [Google Scholar]
  33. Yang R. D., Humphrey A. E. Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol Bioeng. 1975 Aug;17(8):1211–1235. doi: 10.1002/bit.260170809. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES