Abstract
The effect of dewatering on the inactivation rates of enteric viruses in sludge was determined. For this study, water was evaporated from seeded raw sludge at 21 degrees C, and the loss of viral plaque-forming units was measured. Initial results with poliovirus showed that recoverable infectivity gradually decreased with the loss of water until the solids content reached about 65%. When the solids content was increased from 65 to 83%, a further, more dramatic decrease in virus titer of greater than three orders of magnitude was observed. This loss of infectivity was due to irreversible inactivation of poliovirus because viral particles were found to have released their RNA molecules which were extensively degraded. Viral inactivation in these experiments may have been at least partially caused by the evaporation process itself because similar effects on poliovirus particles were observed in distilled water after only partial loss of water by evaporation. Coxsackievirus and reovirus were also found to be inactivated in sludge under comparable conditions, which suggests that dewatering by evaporation may be a feasible method of inactivating all enteric viruses in sludge.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akers T. G., Hatch M. T. Survival of a picornavirus and its infectious ribonucleic acid after aerosolization. Appl Microbiol. 1968 Nov;16(11):1811–1813. doi: 10.1128/am.16.11.1811-1813.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BUCKLAND F. E., TYRRELL D. A. Loss of infectivity on drying various viruses. Nature. 1962 Sep 15;195:1063–1064. doi: 10.1038/1951063a0. [DOI] [PubMed] [Google Scholar]
- Berge T. O., Jewett R. L., Blair W. O. Preservation of enteroviruses by freeze-drying. Appl Microbiol. 1971 Nov;22(5):850–853. doi: 10.1128/am.22.5.850-853.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Jong J. C., Harmsen M., Trouwborst T. The infectivity of the nucleic acid of aerosol-inactivated poliovirus. J Gen Virol. 1973 Jan;18(1):83–86. doi: 10.1099/0022-1317-18-1-83. [DOI] [PubMed] [Google Scholar]
- Dixon G. J., Sidwell R. W., McNeil E. Quantitative studies on fabrics as disseminators of viruses. II. Persistence of poliomyelitis virus on cotton and wool fabrics. Appl Microbiol. 1966 Mar;14(2):183–188. doi: 10.1128/am.14.2.183-188.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Floyd R., Johnson J. D., Sharp D. G. Inactivation by bromine of single poliovirus particles in water. Appl Environ Microbiol. 1976 Feb;31(2):298–303. doi: 10.1128/aem.31.2.298-303.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Floyd R., Sharp D. G. Aggregation of poliovirus and reovirus by dilution in water. Appl Environ Microbiol. 1977 Jan;33(1):159–167. doi: 10.1128/aem.33.1.159-167.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KRAFT L. M., POLLARD E. C. Lyophilization of poliomyelitis virus; heat inactivation of dry MEFl virus. Proc Soc Exp Biol Med. 1954 Jun;86(2):306–309. doi: 10.3181/00379727-86-21081. [DOI] [PubMed] [Google Scholar]
- Lance J. C., Gerba C. P., Melnick J. L. Virus movement in soil columns flooded with secondary sewage effluent. Appl Environ Microbiol. 1976 Oct;32(4):520–526. doi: 10.1128/aem.32.4.520-526.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahl M. C., Sadler C. Virus survival on inanimate surfaces. Can J Microbiol. 1975 Jun;21(6):819–823. doi: 10.1139/m75-121. [DOI] [PubMed] [Google Scholar]
- Trouwborst T., Kuyper S., de Jong J. C., Plantinga A. D. Inactivation of some bacterial and animal viruses by exposure to liquid-air interfaces. J Gen Virol. 1974 Jul;24(1):155–165. doi: 10.1099/0022-1317-24-1-155. [DOI] [PubMed] [Google Scholar]
- Trouwborst T., de Jong J. C. Interaction of some factors in the mechanism of inactivation of bacteriophage MS2 in aerosols. Appl Microbiol. 1973 Sep;26(3):252–257. doi: 10.1128/am.26.3.252-257.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trouwborst T., de Jong J. C., Winkler K. C. Mechanism of inactivation in aerosols of bacteriophage T 1 . J Gen Virol. 1972 Jun;15(3):235–242. doi: 10.1099/0022-1317-15-3-235. [DOI] [PubMed] [Google Scholar]
- Ward R. L., Ashley C. S. Identification of the virucidal agent in wastewater sludge. Appl Environ Microbiol. 1977 Apr;33(4):860–864. doi: 10.1128/aem.33.4.860-864.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward R. L., Ashley C. S. Inactivation of poliovirus in digested sludge. Appl Environ Microbiol. 1976 Jun;31(6):921–930. doi: 10.1128/aem.31.6.921-930.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wellings F. M., Lewis A. L., Mountain C. W. Demonstration of solids-associated virus in wastewater and sludge. Appl Environ Microbiol. 1976 Mar;31(3):354–358. doi: 10.1128/aem.31.3.354-358.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young D. C., Sharp D. G. Poliovirus aggregates and their survival in water. Appl Environ Microbiol. 1977 Jan;33(1):168–177. doi: 10.1128/aem.33.1.168-177.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Jong J. C., Harmsen M., Plantinga A. D., Trouwbrost T. Inactivation of Semliki Forest Virus in aerosols. Appl Environ Microbiol. 1976 Sep;32(3):315–319. doi: 10.1128/aem.32.3.315-319.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Jong J. C., Harmsen M., Trouwborst T. Factors in the inactivation of Encephalomyocarditis virus in aerosols. Infect Immun. 1975 Jul;12(1):29–35. doi: 10.1128/iai.12.1.29-35.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Jong J. C., Harmsen M., Trouwborst T., Winkler K. C. Inactivation of encephalomyocarditis virus in aerosols: fate of virus protein and ribonucleic acid. Appl Microbiol. 1974 Jan;27(1):59–65. doi: 10.1128/am.27.1.59-65.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]