Abstract
Laboratory experiments were conducted to validate theoretical predictions describing a dialysis continuous process for the fermentation of whey lactose to ammonium lactate, in which the fermentor contents are poised at a constant pH by adding ammonia solution and dialyzed through a membrane against water. Dried sweet-cheese whey was rehydrated to contain 230 mg of lactose per ml, supplemented with 8 mg of yeast extract per ml, charged into a 5-liter fermentor without sterilization, adjusted in pH (5.3) and temperature (44°C), and inoculated with Lactobacillus bulgaricus. The fermentor and dialysate circuits were connected, and steady-state conditions were established. A series of such conditions was managed nonaseptically for 94 days to study the process and to demonstrate efficiency and productivity. As time progressed, the fermentation remained homofermentative and increased in conversion efficiency, although membrane fouling necessitated dialyzer cleaning about every 4 weeks. With a retention time of 19 h, 97% of the substrate was converted into products. Relative to nondialysis continuous or batch processes for the fermentation, the dialysis continuous process enabled the use of more concentrated substrate, was more efficient in the rate of substrate conversion, and additionally produced a second effluent of less concentrated but purer ammonium lactate.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CONTOIS D. E. Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures. J Gen Microbiol. 1959 Aug;21:40–50. doi: 10.1099/00221287-21-1-40. [DOI] [PubMed] [Google Scholar]
- Carlsson J. Simplified gas chromatographic procedure for identification of bacterial metabolic products. Appl Microbiol. 1973 Feb;25(2):287–289. doi: 10.1128/am.25.2.287-289.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coulman G. A., Stieber R. W., Gerhardt P. Dialysis continuous process for ammonium-lactate fermentation of whey: mathematical model and computer simulation. Appl Environ Microbiol. 1977 Dec;34(6):725–732. doi: 10.1128/aem.34.6.725-732.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MONTGOMERY R. Further studies of the phenol-sulfuric acid reagent for carbohydrates. Biochim Biophys Acta. 1961 Apr 15;48:591–593. doi: 10.1016/0006-3002(61)90059-2. [DOI] [PubMed] [Google Scholar]
- Reddy C. A., Henderson H. E., Erdman M. D. Bacterial fermentation of cheese whey for production of a ruminant feed supplement rich in curde protein. Appl Environ Microbiol. 1976 Dec;32(6):769–776. doi: 10.1128/aem.32.6.769-776.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz J. S., Gerhardt P. Dialysis culture of microorganisms: design, theory, and results. Bacteriol Rev. 1969 Mar;33(1):1–47. doi: 10.1128/br.33.1.1-47.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]