Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1977 Dec;34(6):777–782. doi: 10.1128/aem.34.6.777-782.1977

Preparation of mutants of Trichoderma reesei with enhanced cellulase production.

B S Montenecourt, D E Eveleigh
PMCID: PMC242747  PMID: 413483

Abstract

The development of an agar plate screening technique has allowed the isolation of a range of mutants of Trichoderma reesei capable of synthesizing cellulase under conditions of high catabolite repression. The properties of one of these mutants (NG-14) is described to illustrate the use of this technique. NG-14 produced five times the filter paper-degrading activity per ml of culture medium and twice the specific activity per mg of excreted protein in submerged culture when compared with the best existing mutant, QM9414. NG-14 also showed enhanced endo-beta-glucanase and beta-glucosidase production. Although these mutants were isolated as cellulase producers in the presence of 5% glycerol on agar plates, in similar liquid medium, NG-14 exhibits only partial derepression of the cellulase complex. Since the proportions of filter paper activity, endo-beta-glucanase, and cellobiase were not the same in mutants NG-14 and QM9414, and the yields of each enzyme under conditions repressive for cellulase synthesis were different, differential control of each enzyme of the cellulase complex is implied. These initial results suggest that the selective technique for isolating hyper-cellulase-producing mutants of Trichoderma will be of considerable use in the development of commercially useful cellulolytic strains.

Full text

PDF
777

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey C., Arst H. N., Jr Carbon catabolite repression in Aspergillos nidulans. Eur J Biochem. 1975 Feb 21;51(2):573–577. doi: 10.1111/j.1432-1033.1975.tb03958.x. [DOI] [PubMed] [Google Scholar]
  2. Ciriacy M. Cis-dominant regulatory mutations affecting the formation of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae. Mol Gen Genet. 1976 Jun 15;145(3):327–333. doi: 10.1007/BF00325831. [DOI] [PubMed] [Google Scholar]
  3. Eberhart B. M., Beck R. S., Goolsby K. M. Cellulase of Neurospora crassa. J Bacteriol. 1977 Apr;130(1):181–186. doi: 10.1128/jb.130.1.181-186.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gratzner H., Sheehan D. N. Neurospora mutant exhibiting hyperproduction of amylase and invertase. J Bacteriol. 1969 Feb;97(2):544–549. doi: 10.1128/jb.97.2.544-549.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gum E. K., Jr, Brown R. D., Jr Structural characterization of a glycoprotein cellulase, 1,4-beta-D-glucan cellobiohydrolase C from Trichoderma viride. Biochim Biophys Acta. 1976 Oct 28;446(2):371–386. doi: 10.1016/0005-2795(76)90004-0. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. METZENBERG R. L. A gene affecting the repression of invertase and trehalase in Neurospora. Arch Biochem Biophys. 1962 Mar;96:468–474. doi: 10.1016/0003-9861(62)90322-3. [DOI] [PubMed] [Google Scholar]
  8. Mandels M., Andreotti R., Roche C. Measurement of saccharifying cellulase. Biotechnol Bioeng Symp. 1976;(6):21–33. [PubMed] [Google Scholar]
  9. Mandels M. Microbial sources of cellulase. Biotechnol Bioeng Symp. 1975;(5):81–105. [PubMed] [Google Scholar]
  10. Martinelli S. D., Clutterbuck A. J. A quantitative survey of conidiation mutants in Aspergillus nidulans. J Gen Microbiol. 1971 Dec;69(2):261–268. doi: 10.1099/00221287-69-2-261. [DOI] [PubMed] [Google Scholar]
  11. Montenecourt B. S., Eveleigh D. E. Semiquantitative Plate Assay for Determination of Cellulase Production by Trichoderma viride. Appl Environ Microbiol. 1977 Jan;33(1):178–183. doi: 10.1128/aem.33.1.178-183.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Montenecourt B. S., Kuo S. C., Lampen J. O. Saccharomyces mutants with invertase formation resistant to repression by hexoses. J Bacteriol. 1973 Apr;114(1):233–238. doi: 10.1128/jb.114.1.233-238.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nisizawa T., Suzuki H., Nisizawa K. Catabolite repression of cellulase formation in Trichoderma viride. J Biochem. 1972 Jun;71(6):999–1007. doi: 10.1093/oxfordjournals.jbchem.a129872. [DOI] [PubMed] [Google Scholar]
  14. Schamhart D. H., Ten Berge A. M., Van De Poll K. W. Isolation of a catabolite repression mutant of yeast as a revertant of a strain that is maltose negative in the respiratory-deficient state. J Bacteriol. 1975 Mar;121(3):747–752. doi: 10.1128/jb.121.3.747-752.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sternberg D. Beta-glucosidase of Trichoderma: its biosynthesis and role in saccharification of cellulose. Appl Environ Microbiol. 1976 May;31(5):648–654. doi: 10.1128/aem.31.5.648-654.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sternberg D., Sussman A. S. Hyperproduction of some glycosidases in Neurospora crassa. Arch Microbiol. 1974;101(4):303–320. doi: 10.1007/BF00455947. [DOI] [PubMed] [Google Scholar]
  17. Sternberg D., Vijayakumar P., Reese E. T. beta-Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can J Microbiol. 1977 Feb;23(2):139–147. doi: 10.1139/m77-020. [DOI] [PubMed] [Google Scholar]
  18. Zimmermann F. K., Eaton N. R. Genetics of induction and catabolite repression of Maltese synthesis in Saccharomyces cerevisiae. Mol Gen Genet. 1974;134(3):261–272. doi: 10.1007/BF00267720. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES