Skip to main content
Bulletin of the World Health Organization logoLink to Bulletin of the World Health Organization
. 1971;44(1-2-3):193–202.

Resistance in insects: the role of metabolism and the possible use of synergists

F J Oppenoorth
PMCID: PMC2428052  PMID: 5315343

Abstract

The use of synergists to prevent detoxification raises two principal problems: (1) the importance of detoxification as a resistance mechanism and the extent to which synergists could contribute to a solution of the resistance problem, and (2) the role of detoxification as a cause of selectivity, and whether the loss in selectivity that might result from the use of synergists would be a disadvantage. If insecticides could be combined with detoxification-blocking synergists, a much wider range of insecticides might become available for use.

This paper also discusses the relative importance of different routes of detoxification, whether to use a constant synergist—insecticide ratio, and some recent work carried out in the author's laboratory on microsomal oxidation of paraoxon and on the synergistic action of P=S compounds.

Full text

PDF
193

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROOKS G. T., HARRISON A. THE EFFECT OF PYRETHRIN SYNERGISTS, ESPECIALLY SESAMEX, ON THE INSECTICIDAL POTENCY OF HEXACHLOROCYCLOPENTADIENE DERIVATIVES ("CYCLODIENE" INSECTICIDES) IN THE ADULT HOUSEFLY, MUSCA DOMESTICA L. Biochem Pharmacol. 1964 Jun;13:827–840. doi: 10.1016/0006-2952(64)90025-5. [DOI] [PubMed] [Google Scholar]
  2. BROOKS G. T. Mechanisms of resistance of the adult housefly (Musca domestica) to 'cyclodiene' insecticides. Nature. 1960 Apr 2;186:96–98. doi: 10.1038/186096a0. [DOI] [PubMed] [Google Scholar]
  3. Casida J. E., Engel J. L., Essac E. G., Kamienski F. X., Kuwatsuka S. Methylene-C14-dioxyphenyl compounds: metabolism in relation to their synergistic action. Science. 1966 Sep 2;153(3740):1130–1133. doi: 10.1126/science.153.3740.1130. [DOI] [PubMed] [Google Scholar]
  4. Casida J. E. Mixed-function oxidase involvement in the biochemistry of insecticide synergists. J Agric Food Chem. 1970 Sep-Oct;18(5):753–772. doi: 10.1021/jf60171a013. [DOI] [PubMed] [Google Scholar]
  5. Grigolo A., Oppenoorth F. J. The importance of DDT-dehydrochlorinase for the effect of the resistance gene kdr in the housefly Musca domestica L. Genetica. 1966;37(2):159–170. doi: 10.1007/BF01547127. [DOI] [PubMed] [Google Scholar]
  6. Lewis J. B. Detoxification of diazinon by subcellular fractions of diazinon-resistant and susceptible houseflies. Nature. 1969 Nov 29;224(5222):917–918. doi: 10.1038/224917a0. [DOI] [PubMed] [Google Scholar]
  7. Mengle D. C., O'brien R. D. The spontaneous and induced recovery of fly-brain cholinesterase after inhibition by organophosphates. Biochem J. 1960 Apr;75(1):201–207. doi: 10.1042/bj0750201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Metcalf R. L. Mode of action of insecticide synergists. Annu Rev Entomol. 1967;12:229–256. doi: 10.1146/annurev.en.12.010167.001305. [DOI] [PubMed] [Google Scholar]
  9. Nakatsugawa T., Tolman N. M., Dahm P. A. Degradation and activation of parathion analogs by microsomal enzymes. Biochem Pharmacol. 1968 Aug;17(8):1517–1528. [PubMed] [Google Scholar]
  10. Nakatsugawa T., Tolman N. M., Dahm P. A. Metabolism of S35-parathion in the house fly. J Econ Entomol. 1969 Apr;62(2):408–411. doi: 10.1093/jee/62.2.408. [DOI] [PubMed] [Google Scholar]
  11. OPPENOORTH F. J., van ASPEREN Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance. Science. 1960 Jul 29;132(3422):298–299. doi: 10.1126/science.132.3422.298. [DOI] [PubMed] [Google Scholar]
  12. SMISSAERT H. R. CHOLINESTERASE INHIBITION IN SPIDER MITES SUSCEPTIBLE AND RESISTANT TO ORGANOPHOSPHATE. Science. 1964 Jan 10;143(3602):129–131. doi: 10.1126/science.143.3602.129. [DOI] [PubMed] [Google Scholar]
  13. Smissaert H. R., Voerman S., Oostenbrugge L., Renooy N. Acetylcholinesterases of organophosphate-susceptible and -resistant spider mites. J Agric Food Chem. 1970 Jan-Feb;18(1):66–75. doi: 10.1021/jf60167a008. [DOI] [PubMed] [Google Scholar]
  14. Tsukamoto M., Casida J. E. Albumin enhancement of oxidative metabolism of methylcarbamate insecticide chemicals by the house fly microsome-NADPH2 system. J Econ Entomol. 1967 Apr;60(2):617–619. doi: 10.1093/jee/60.2.617. [DOI] [PubMed] [Google Scholar]
  15. WINTERINGHAM F. P., HARRISON A. Mechanisms of resistance of adult housefiles to the insecticide dieldrin. Nature. 1959 Aug 22;184:608–610. doi: 10.1038/184608a0. [DOI] [PubMed] [Google Scholar]
  16. Wharton R. H., Roulston W. J. Resistance of ticks to chemicals. Annu Rev Entomol. 1970;15:381–404. doi: 10.1146/annurev.en.15.010170.002121. [DOI] [PubMed] [Google Scholar]
  17. Wilkinson C. F. Effects of synergists on the metabolism and toxicity of anticholinesterases. Bull World Health Organ. 1971;44(1-3):171–190. [PMC free article] [PubMed] [Google Scholar]
  18. Winteringham F. P. Mechanisms of selective insecticidal action. Annu Rev Entomol. 1969;14:409–442. doi: 10.1146/annurev.en.14.010169.002205. [DOI] [PubMed] [Google Scholar]
  19. el Bashir S., Oppenoorth F. J. Microsomal oxidations of organophosphate insecticides in some resistant strains of houseflies. Nature. 1969 Jul 12;223(5202):210–211. doi: 10.1038/223210a0. [DOI] [PubMed] [Google Scholar]

Articles from Bulletin of the World Health Organization are provided here courtesy of World Health Organization

RESOURCES