Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1978 Feb;35(2):247–250. doi: 10.1128/aem.35.2.247-250.1978

Studies on the differential inhibition by azide on the nitrite/nitrous oxide level of denitrification.

E Sidransky, B Walter, T C Hollocher
PMCID: PMC242820  PMID: 416748

Abstract

A gas chromatographic method was used to demonstrate that nitrite can counteract the inhibition by azide of nitrous oxide reductase activity in denitrifiers. This effect explains why azide (and cyanide) can inhibit nitrogen production from nitrous oxide in these organisms but have little effect on nitrogen production from nitrite. Although the physiological basis by which nitrite opposes the action of azide remains unknown, extensive destruction of azide by nitrite can be ruled out as an explanation.

Full text

PDF
247

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. 't Riet J van, Stouthamer A. H., Planta R. J. Regulation of nitrate assimilation and nitrate respiration in Aerobacter aerogenes. J Bacteriol. 1968 Nov;96(5):1455–1464. doi: 10.1128/jb.96.5.1455-1464.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ALLEN M. B., VAN NIEL C. B. Experiments on bacterial denitrification. J Bacteriol. 1952 Sep;64(3):397–412. doi: 10.1128/jb.64.3.397-412.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balderston W. L., Sherr B., Payne W. J. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl Environ Microbiol. 1976 Apr;31(4):504–508. doi: 10.1128/aem.31.4.504-508.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KLUYVER A. J., VERHOEVEN W. Studies on true dissimilatory nitrate reduction. II. The mechanism of denitrification. Antonie Van Leeuwenhoek. 1954;20(3):241–262. doi: 10.1007/BF02543727. [DOI] [PubMed] [Google Scholar]
  5. Matsubara T., Mori T. Studies on denitrification. IX. Nitrous oxide, its production and reduction to nitrogen. J Biochem. 1968 Dec;64(6):863–871. doi: 10.1093/oxfordjournals.jbchem.a128968. [DOI] [PubMed] [Google Scholar]
  6. Matsubara T. The participation of cytochromes in the reduction of N20 to N2 by a denitryfying bacterium. J Biochem. 1975 Mar;77(3):627–632. doi: 10.1093/oxfordjournals.jbchem.a130764. [DOI] [PubMed] [Google Scholar]
  7. PICHINOTY F., D'ORNANO L. [Research on the reduction of nitrous oxide by Micrococcus denitrificans]. Ann Inst Pasteur (Paris) 1961 Sep;101:418–426. [PubMed] [Google Scholar]
  8. SACKS L. E., BARKER H. A. Substrate oxidation and nitrous oxide utilization in denitrification. J Bacteriol. 1952 Aug;64(2):247–252. doi: 10.1128/jb.64.2.247-252.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. St John R. T., Hollocher T. C. Nitrogen 15 tracer studies on the pathway of denitrification in Pseudomonas aeruginosa. J Biol Chem. 1977 Jan 10;252(1):212–218. [PubMed] [Google Scholar]
  10. Yoshinari T., Knowles R. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem Biophys Res Commun. 1976 Apr 5;69(3):705–710. doi: 10.1016/0006-291x(76)90932-3. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES